- Browse by Author
Browsing by Author "Olivera Perez, Leonardo J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Enhanced mitochondrial biogenesis promotes neuroprotection in human pluripotent stem cell derived retinal ganglion cells(Springer Nature, 2023-02-24) Surma, Michelle; Anbarasu, Kavitha; Dutta, Sayanta; Olivera Perez, Leonardo J.; Huang, Kang-Chieh; Meyer, Jason S.; Das, Arupratan; Ophthalmology, School of MedicineMitochondrial dysfunctions are widely afflicted in central nervous system (CNS) disorders with minimal understanding on how to improve mitochondrial homeostasis to promote neuroprotection. Here we have used human stem cell differentiated retinal ganglion cells (hRGCs) of the CNS, which are highly sensitive towards mitochondrial dysfunctions due to their unique structure and function, to identify mechanisms for improving mitochondrial quality control (MQC). We show that hRGCs are efficient in maintaining mitochondrial homeostasis through rapid degradation and biogenesis of mitochondria under acute damage. Using a glaucomatous Optineurin mutant (E50K) stem cell line, we show that at basal level mutant hRGCs possess less mitochondrial mass and suffer mitochondrial swelling due to excess ATP production load. Activation of mitochondrial biogenesis through pharmacological inhibition of the Tank binding kinase 1 (TBK1) restores energy homeostasis, mitigates mitochondrial swelling with neuroprotection against acute mitochondrial damage for glaucomatous E50K hRGCs, revealing a novel neuroprotection mechanism.Item Quantitative Analysis of Clot Deposition on Extracorporeal Life Support Membrane Oxygenators Using Digital and Scanning Electron Microscopy Imaging Techniques(Bio-protocol, 2023-09-20) Zang, Yanyi; Roberts, Teryn R.; Harea, George T.; Beely, Brendan M.; Olivera Perez, Leonardo J.; Ande, Sreedevi; Batchinsky, Maria; Lee, Ji H.; Thrailkill, Marianne A.; Reynolds, Melissa M.; Batchinsky, Andriy I.; Medicine, School of MedicineDevice-induced thrombosis remains a major complication of extracorporeal life support (ECLS). To more thoroughly understand how blood components interact with the artificial surfaces of ECLS circuit components, assessment of clot deposition on these surfaces following clinical use is urgently needed. Scanning electron microscopy (SEM), which produces high-resolution images at nanoscale level, allows visualization and characterization of thrombotic deposits on ECLS circuitry. However, methodologies to increase the quantifiability of SEM analysis of ECLS circuit components have yet to be applied clinically. To address these issues, we developed a protocol to quantify clot deposition on ECLS membrane oxygenator gas transfer fiber sheets through digital and SEM imaging techniques. In this study, ECLS membrane oxygenator fiber sheets were obtained, fixed, and imaged after use. Following a standardized process, the percentage of clot deposition on both digital images and SEM images was quantified using ImageJ through blind reviews. The interrater reliability of quantitative analysis among reviewers was evaluated. Although this protocol focused on the analysis of ECLS membrane oxygenators, it is also adaptable to other components of the ECLS circuits such as catheters and tubing. Key features: • Quantitative analysis of clot deposition using digital and scanning electron microscopy (SEM) techniques • High-resolution images at nanoscale level • Extracorporeal life support (ECLS) devices • Membrane oxygenators • Blood-contacting surfaces