- Browse by Author
Browsing by Author "Ohno-Machado, Lucila"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A research agenda to support the development and implementation of genomics-based clinical informatics tools and resources(Oxford University Press, 2022) Wiley, Ken; Findley, Laura; Goldrich, Madison; Rakhra-Burris, Tejinder K.; Stevens, Ana; Williams, Pamela; Bult, Carol J.; Chisholm, Rex; Deverka, Patricia; Ginsburg, Geoffrey S.; Green, Eric D.; Jarvik, Gail; Mensah, George A.; Ramos, Erin; Relling, Mary V.; Roden, Dan M.; Rowley, Robb; Alterovitz, Gil; Aronson, Samuel; Bastarache, Lisa; Cimino, James J.; Crowgey, Erin L.; Del Fiol, Guilherme; Freimuth, Robert R.; Hoffman, Mark A.; Jeff, Janina; Johnson, Kevin; Kawamoto, Kensaku; Madhavan, Subha; Mendonca, Eneida A.; Ohno-Machado, Lucila; Pratap, Siddharth; Overby Taylor, Casey; Ritchie, Marylyn D.; Walton, Nephi; Weng, Chunhua; Zayas-Cabán, Teresa; Manolio, Teri A.; Williams, Marc S.; Pediatrics, School of MedicineObjective: The Genomic Medicine Working Group of the National Advisory Council for Human Genome Research virtually hosted its 13th genomic medicine meeting titled "Developing a Clinical Genomic Informatics Research Agenda". The meeting's goal was to articulate a research strategy to develop Genomics-based Clinical Informatics Tools and Resources (GCIT) to improve the detection, treatment, and reporting of genetic disorders in clinical settings. Materials and methods: Experts from government agencies, the private sector, and academia in genomic medicine and clinical informatics were invited to address the meeting's goals. Invitees were also asked to complete a survey to assess important considerations needed to develop a genomic-based clinical informatics research strategy. Results: Outcomes from the meeting included identifying short-term research needs, such as designing and implementing standards-based interfaces between laboratory information systems and electronic health records, as well as long-term projects, such as identifying and addressing barriers related to the establishment and implementation of genomic data exchange systems that, in turn, the research community could help address. Discussion: Discussions centered on identifying gaps and barriers that impede the use of GCIT in genomic medicine. Emergent themes from the meeting included developing an implementation science framework, defining a value proposition for all stakeholders, fostering engagement with patients and partners to develop applications under patient control, promoting the use of relevant clinical workflows in research, and lowering related barriers to regulatory processes. Another key theme was recognizing pervasive biases in data and information systems, algorithms, access, value, and knowledge repositories and identifying ways to resolve them.Item Use of Electronic Health Records to Support a Public Health Response to the COVID-19 Pandemic in the United States: A Perspective from Fifteen Academic Medical Centers(Oxford University Press, 2020-11-03) Madhavan, Subha; Bastarache, Lisa; Brown, Jeffrey S.; Dorr, David A.; Embi, Peter J.; Friedman, Charles P.; Johnson, Kevin B.; Moore, Jason H.; Kohane, Isaac S.; Payne, Philip R.O.; Tenenbaum, Jessica D.; Weiner, Mark G.; Wilcox, Adam B.; Ohno-Machado, Lucila; Butte, Atul J.; Medicine, School of MedicineOur goal is to summarize the collective experience of 15 organizations in dealing with uncoordinated efforts that result in unnecessary delays in understanding, predicting, preparing for, containing, and mitigating the COVID-19 pandemic in the US. Response efforts involve the collection and analysis of data corresponding to healthcare organizations, public health departments, socioeconomic indicators, as well as additional signals collected directly from individuals and communities. We focused on electronic health record (EHR) data, since EHRs can be leveraged and scaled to improve clinical care, research, and to inform public health decision-making. We outline the current challenges in the data ecosystem and the technology infrastructure that are relevant to COVID-19, as witnessed in our 15 institutions. The infrastructure includes registries and clinical data networks to support population-level analyses. We propose a specific set of strategic next steps to increase interoperability, overall organization, and efficiencies