- Browse by Author
Browsing by Author "Oh, Chang Joo"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Noncanonical PDK4 action alters mitochondrial dynamics to affect the cellular respiratory status(National Academy of Science, 2022) Thoudam, Themis; Chanda, Dipanjan; Sinam, Ibotombi Singh; Kim, Byung-Gyu; Kim, Mi-Jin; Oh, Chang Joo; Lee, Jung Yi; Kim, Min-Ji; Park, Soo Yeun; Lee, Shin Yup; Jung, Min-Kyo; Mun, Ji Young; Harris, Robert A.; Ishihara, Naotada; Jeon, Jae-Han; Lee, In-Kyu; Biochemistry and Molecular Biology, School of MedicineDynamic regulation of mitochondrial morphology provides cells with the flexibility required to adapt and respond to electron transport chain (ETC) toxins and mitochondrial DNA-linked disease mutations, yet the mechanisms underpinning the regulation of mitochondrial dynamics machinery by these stimuli is poorly understood. Here, we show that pyruvate dehydrogenase kinase 4 (PDK4) is genetically required for cells to undergo rapid mitochondrial fragmentation when challenged with ETC toxins. Moreover, PDK4 overexpression was sufficient to promote mitochondrial fission even in the absence of mitochondrial stress. Importantly, we observed that the PDK4-mediated regulation of mitochondrial fission was independent of its canonical function, i.e., inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Phosphoproteomic screen for PDK4 substrates, followed by nonphosphorylatable and phosphomimetic mutations of the PDK4 site revealed cytoplasmic GTPase, Septin 2 (SEPT2), as the key effector molecule that acts as a receptor for DRP1 in the outer mitochondrial membrane to promote mitochondrial fission. Conversely, inhibition of the PDK4-SEPT2 axis could restore the balance in mitochondrial dynamics and reinvigorates cellular respiration in mitochondrial fusion factor, mitofusin 2-deficient cells. Furthermore, PDK4-mediated mitochondrial reshaping limits mitochondrial bioenergetics and supports cancer cell growth. Our results identify the PDK4-SEPT2-DRP1 axis as a regulator of mitochondrial function at the interface between cellular bioenergetics and mitochondrial dynamics.Item Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation(Nature Publishing Group, 2015-11-12) Lee, Sun Joo; Jeong, Ji Yun; Oh, Chang Joo; Park, Sungmi; Kim, Joon-Young; Kim, Han-Jong; Doo Kim, Nam; Choi, Young-Keun; Do, Ji-Yeon; Go, Younghoon; Ha, Chae-Myung; Choi, Je-Yong; Huh, Seung; Ho Jeoung, Nam; Lee, Ki-Up; Choi, Hueng-Sik; Wang, Yu; Park, Keun-Gyu; Harris, Robert A.; Lee, In-Kyu; Department of Biochemistry & Molecular Biology, IU School of MedicineVascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification. Both genetic and pharmacological inhibition of PDK4 ameliorated the calcification in phosphate-treated VSMCs and aortic rings and in vitamin D3-treated mice. PDK4 augmented the osteogenic differentiation of VSMCs by phosphorylating SMAD1/5/8 via direct interaction, which enhances BMP2 signaling. Furthermore, increased expression of PDK4 in phosphate-treated VSMCs induced mitochondrial dysfunction followed by apoptosis. Taken together, our results show that upregulation of PDK4 promotes vascular calcification by increasing osteogenic markers with no adverse effect on bone formation, demonstrating that PDK4 is a therapeutic target for vascular calcification.Item Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype(Frontiers, 2019-05-07) Min, Byong-Keol; Park, Sungmi; Kang, Hyeon-Ji; Kim, Dong Wook; Ham, Hye Jin; Ha, Chae-Myeong; Choi, Byung-Jun; Lee, Jung Yi; Oh, Chang Joo; Yoo, Eun Kyung; Kim, Hui Eon; Kim, Byung-Gyu; Jeon, Jae-Han; Hyeon, Do Young; Hwang, Daehee; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, Taeho; Kim, Jung-whan; Choi, Yeon-Kyung; Park, Keun-Gyu; Chawla, Ajay; Lee, Jongsoon; Harris, Robert A.; Lee, In-Kyu; Biochemistry and Molecular Biology, School of MedicineMetabolic reprogramming during macrophage polarization supports the effector functions of these cells in health and disease. Here, we demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4 deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this lack of polarization was correlated with improved mitochondrial respiration and rewiring of metabolic breaks that are characterized by increased glycolytic intermediates and reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to inflammatory stimuli (lipopolysaccharide plus IFN-γ). Transplantation of PDK2/4-deficient bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance, and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor, KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a reduction in the levels of pro-inflammatory markers and improved mitochondrial function. These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization of macrophages, which could potentially be exploited as a novel therapeutic target for obesity-associated metabolic disorders and other inflammatory conditions.Item Upregulation of the ERRγ–VDAC1 axis underlies the molecular pathogenesis of pancreatitis(National Academy of Science, 2023) Chanda, Dipanjan; Thoudam, Themis; Sinam, Ibotombi Singh; Lim, Chae Won; Kim, Myeongjin; Wang, Jiale; Lee, Kyeong-Min; Ma, Jing; Saxena, Romil; Choi, Jinhyuk; Oh, Chang Joo; Lee, Hoyul; Jeon, Yong Hyun; Cho, Sung Jin; Jung, Hoe-Yune; Park, Keun-Gyu; Choi, Hueng-Sik; Suh, Jae Myoung; Auwerx, Johan; Ji, Baoan; Liangpunsakul, Suthat; Jeon, Jae-Han; Lee, In-Kyu; Medicine, School of MedicineEmerging evidence suggest that transcription factors play multiple roles in the development of pancreatitis, a necroinflammatory condition lacking specific therapy. Estrogen-related receptor γ (ERRγ), a pleiotropic transcription factor, has been reported to play a vital role in pancreatic acinar cell (PAC) homeostasis. However, the role of ERRγ in PAC dysfunction remains hitherto unknown. Here, we demonstrated in both mice models and human cohorts that pancreatitis is associated with an increase in ERRγ gene expression via activation of STAT3. Acinar-specific ERRγ haploinsufficiency or pharmacological inhibition of ERRγ significantly impaired the progression of pancreatitis both in vitro and in vivo. Using systematic transcriptomic analysis, we identified that voltage-dependent anion channel 1 (VDAC1) acts as a molecular mediator of ERRγ. Mechanistically, we showed that induction of ERRγ in cultured acinar cells and mouse pancreata enhanced VDAC1 expression by directly binding to specific site of the Vdac1 gene promoter and resulted in VDAC1 oligomerization. Notably, VDAC1, whose expression and oligomerization were dependent on ERRγ, modulates mitochondrial Ca2+ and ROS levels. Inhibition of the ERRγ-VDAC1 axis could alleviate mitochondrial Ca2+ accumulation, ROS formation and inhibit progression of pancreatitis. Using two different mouse models of pancreatitis, we showed that pharmacological blockade of ERRγ-VDAC1 pathway has therapeutic benefits in mitigating progression of pancreatitis. Likewise, using PRSS1R122H-Tg mice to mimic human hereditary pancreatitis, we demonstrated that ERRγ inhibitor also alleviated pancreatitis. Our findings highlight the importance of ERRγ in pancreatitis progression and suggests its therapeutic intervention for prevention and treatment of pancreatitis.