ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Obeid, Makram"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study
    (MDPI, 2024-09-06) Charouf, Daniel; Miller, Derryl; Haddad, Laith; White, Fletcher A.; Boustany, Rose-Mary; Obeid, Makram; Neurology, School of Medicine
    Advances in genetics led to the identification of hundreds of epilepsy-related genes, some of which are treatable with etiology-specific interventions. However, the diagnostic yield of next-generation sequencing (NGS) in unexplained epilepsy is highly variable (10–50%). We sought to determine the diagnostic yield and clinical utility of NGS in children with unexplained epilepsy that is accompanied by neurodevelopmental delays and/or is medically intractable. A 5-year retrospective review was conducted at the American University of Beirut Medical Center to identify children who underwent whole exome sequencing (WES) or whole genome sequencing (WGS). Data on patient demographics, neurodevelopment, seizures, and treatments were collected. Forty-nine children underwent NGS with an overall diagnostic rate of 68.9% (27/38 for WES, and 4/7 for WGS). Most children (42) had neurodevelopmental delays with (18) or without (24) refractory epilepsy, and only three had refractory epilepsy without delays. The diagnostic yield was 77.8% in consanguineous families (18), and 61.5% in non-consanguineous families (26); consanguinity information was not available for one family. Genetic test results led to anti-seizure medication optimization or dietary therapies in six children, with subsequent improvements in seizure control and neurodevelopmental trajectories. Not only is the diagnostic rate of NGS high in children with unexplained epilepsy and neurodevelopmental delays, but also genetic testing in this population may often lead to potentially life-altering interventions.
  • Loading...
    Thumbnail Image
    Item
    Inkjet-Printed, Flexible Organic Electrochemical Transistors for High-Performance Electrocorticography Recordings
    (American Chemical Society, 2024-08-15) Khoury, Fadi; Saleh, Sahera; Badawe, Heba; Obeid, Makram; Khraiche, Massoud; Neurology, School of Medicine
    Organic electrochemical transistors (OECTs) have emerged as powerful tools for biosignal amplification, including electrocorticography (ECoG). However, their widespread application has been limited by the complexities associated with existing fabrication techniques, restricting accessibility and scalability. Here, we introduce a novel all-planar, all-printed high-performance OECT device that significantly enhances the accuracy and sensitivity of ECoG recordings. Achieved through an innovative three-step drop-on-demand inkjet printing process on flexible substrates, our device offers a rapid response time of 0.5 ms, a compact channel area of 1950 μm2, and is characterized by a transconductance of 11 mS. This process not only simplifies integration but also reduces costs. Our optimized in-plane gate voltage control facilitates operation at peak transconductance, which elevates the signal-to-noise ratio (SNR) by up to 133%. In vivo evaluations in a rat model of seizure demonstrate the device's performance in recording distinct electrographic phases, surpassing the capabilities of PEDOT:PSS-coated gold-based ultralow impedance passive electrodes, achieving a high SNR of 48 db. Our results underscore the potential of Inkjet-printed OECTs in advancing the accessibility and accuracy of diagnostic tools that could enhance patient care by facilitating timely detection of neurological conditions.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University