- Browse by Author
Browsing by Author "O’Neill, Kalisha"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item 547 The viscous and fermentability properties of dietary fiber impact on chronic kidney disease-mineral and bone disorder(Cambridge University Press, 2024-04-03) Biruete, Annabel; Chen, Neal X.; Srinivasan, Shruthi; O’Neill, Kalisha; Siles, Samantha; Hill Gallant, Kathleen; Moe, Sharon M.; Medicine, School of MedicineOBJECTIVES/GOALS: Dietary fiber has been used in other clinical populations to improve mineral disorders, but there is limited data in chronic kidney disease, despite the high prevalence of mineral and bone disorder (known as CKD-MBD). Our objective was to evaluate the effect of dietary fiber based on viscosity and fermentability on CKD-MBD outcomes. METHODS/STUDY POPULATION: 22-week-old male CKD rats (mild-to-moderate CKD) were randomly assigned to receive one of four fiber treatments (10% w/w each) based on fermentability and viscosity: 1) Cellulose (-fermentability, -viscosity), 2) Inulin (+fermentability, -viscosity), 3) Psyllium husk (-fermentability, +viscosity), or 4) Pectin (+ fermentability, +viscosity). Treatments lasted 10 weeks, and rats were euthanized at 32 weeks of age (kidney failure). Rats were placed in metabolic cages for 3 consecutive days the last week before euthanasia for mineral balance. At euthanasia, blood, tibia, heart, and aorta were collected for CKD-MBD assessment. Additional tissues collected included kidneys and all intestinal segments. RESULTS/ANTICIPATED RESULTS: Our preliminary data indicates that weight trajectories and survival were similar between treatment groups. At 33 weeks of age, kidney weight index (an indirect measurement of kidney function as this animal model develops polycystic kidneys) was lower in the psyllium-treated rats compared to all of the other treatments. Plasma phosphorus was lower with Psyllium and Pectin compared to Cellulose-treated rats. Left ventricular mass index was lower in the Inulin, Psyllium, and Pectin-treated rats compared to the Cellulose-treated rats. Ongoing tissue analyses include biochemical markers of mineral and bone metabolism (parathyroid hormone, fibroblast growth factor-23, and phosphorus balance), bone parameters (dynamic histomorphometry and microCT), and cardiovascular calcification. DISCUSSION/SIGNIFICANCE: Our preliminary data indicate that dietary fiber based on fermentability and viscosity impacts CKD-MBD outcomes and may be an innovative, low-cost intervention that can be trialed in people with CKD for the prevention and treatment of CKD-MBD.Item Differential miRNA Expression in Cells and Matrix Vesicles in Vascular Smooth Muscle Cells from Rats with Kidney Disease(PLOS, 2015-06-26) Chaturvedi, Praneet; Chen, Neal X.; O’Neill, Kalisha; McClintick, Jeanette N.; Moe, Sharon M.; Janga, Sarath Chandra; Department of BioHealth Informatics, School of Informatics and ComputingVascular calcification is a complex process and has been associated with aging, diabetes, chronic kidney disease (CKD). Although there have been several studies that examine the role of miRNAs (miRs) in bone osteogenesis, little is known about the role of miRs in vascular calcification and their role in the pathogenesis of vascular abnormalities. Matrix vesicles (MV) are known to play in important role in initiating vascular smooth muscle cell (VSMC) calcification. In the present study, we performed miRNA microarray analysis to identify the dysregulated miRs between MV and VSMC derived from CKD rats to understand the role of post-transcriptional regulatory networks governed by these miRNAs in vascular calcification and to uncover the differential miRNA content of MV. The percentage of miRNA to total RNA was increased in MV compared to VSMC. Comparison of expression profiles of miRNA by microarray demonstrated 33 miRs to be differentially expressed with the majority (~ 57%) of them down-regulated. Target genes controlled by differentially expressed miRNAs were identified utilizing two different complementary computational approaches Miranda and Targetscan to understand the functions and pathways that may be affected due to the production of MV from calcifying VSMC thereby contributing to the regulation of genes by miRs. We found several processes including vascular smooth muscle contraction, response to hypoxia and regulation of muscle cell differentiation to be enriched. Signaling pathways identified included MAP-kinase and wnt signaling that have previously been shown to be important in vascular calcification. In conclusion, our results demonstrate that miRs are concentrated in MV from calcifying VSMC, and that important functions and pathways are affected by the miRs dysregulation between calcifying VSMC and the MV they produce. This suggests that miRs may play a very important regulatory role in vascular calcification in CKD by controlling an extensive network of post-transcriptional targets.Item Effects of ferric citrate and intravenous iron sucrose on markers of mineral, bone, and iron homeostasis in a rat model of CKD-MBD(Oxford University Press, 2022) Biruete, Annabel; Metzger, Corinne E.; Chen, Neal X.; Swallow, Elizabeth A.; Vrabec, Curtis; Clinkenbeard, Erica L.; Stacy, Alexander J.; Srinivasan, Shruthi; O’Neill, Kalisha; Avin, Keith G.; Allen, Matthew R.; Moe, Sharon M.; Anatomy, Cell Biology and Physiology, School of MedicineBackground: Anemia and chronic kidney disease-mineral and bone disorder (CKD-MBD) are common and begin early in CKD. Limited studies have concurrently compared the effects of ferric citrate (FC) versus intravenous (IV) iron on CKD-MBD and iron homeostasis in moderate CKD. Methods: We tested the effects of 10 weeks of 2% FC versus IV iron sucrose in rats with moderate CKD (Cy/+ male rat) and untreated normal (NL) littermates. Outcomes included a comprehensive assessment of CKD-MBD, iron homeostasis and oxidative stress. Results: CKD rats had azotemia, elevated phosphorus, parathyroid hormone and fibroblast growth factor-23 (FGF23). Compared with untreated CKD rats, treatment with FC led to lower plasma phosphorus, intact FGF23 and a trend (P = 0.07) toward lower C-terminal FGF23. FC and IV iron equally reduced aorta and heart calcifications to levels similar to NL animals. Compared with NL animals, CKD animals had higher bone turnover, lower trabecular volume and no difference in mineralization; these were unaffected by either iron treatment. Rats treated with IV iron had cortical and bone mechanical properties similar to NL animals. FC increased the transferrin saturation rate compared with untreated CKD and NL rats. Neither iron treatment increased oxidative stress above that of untreated CKD. Conclusions: Oral FC improved phosphorus homeostasis, some iron-related parameters and the production and cleavage of FGF23. The intermittent effect of low-dose IV iron sucrose on cardiovascular calcification and bone should be further explored in moderate-advanced CKD.Item Non-Additive Effects of Combined NOX1/4 Inhibition and Calcimimetic Treatment on a Rat Model of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)(Wiley, 2022-02-11) Damrath, John G.; Chen, Neal X.; Metzger, Corinne E.; Srinivasan, Shruthi; O’Neill, Kalisha; Biruete, Annabel; Avin, Keith G.; Wallace, Joseph M.; Allen, Matthew R.; Moe, Sharon M.; Medicine, School of MedicineChronic kidney disease‐mineral and bone disorder (CKD‐MBD) increases cardiovascular calcification and skeletal fragility in part by increasing systemic oxidative stress and disrupting mineral homeostasis through secondary hyperparathyroidism. We hypothesized that treatments to reduce reactive oxygen species formation and reduce parathyroid hormone (PTH) levels would have additive beneficial effects to prevent cardiovascular calcification and deleterious bone architecture and mechanics before end‐stage kidney disease. To test this hypothesis, we treated a naturally progressive model of CKD‐MBD, the Cy/+ rat, beginning early in CKD with the NADPH oxidase (NOX1/4) inhibitor GKT‐137831 (GKT), the preclinical analogue of the calcimimetic etelcalcetide, KP‐2326 (KP), and their combination. The results demonstrated that CKD animals had elevated blood urea nitrogen, PTH, fibroblast growth factor 23 (FGF23), and phosphorus. Treatment with KP reduced PTH levels compared with CKD animals, whereas GKT treatment increased C‐terminal FGF23 levels without altering intact FGF23. GKT treatment alone reduced aortic calcification and NOX4 expression but did not alter the oxidative stress marker 8‐OHdG in the serum or aorta. KP treatment reduced aortic 8‐OHdG and inhibited the ability for GKT to reduce aortic calcification. Treatments did not alter heart calcification or left ventricular mass. In the skeleton, CKD animals had reduced trabecular bone volume fraction and trabecular number with increased trabecular spacing that were not improved with either treatment. The cortical bone was not altered by CKD or by treatments at this early stage of CKD. These results suggest that GKT reduces aortic calcification while KP reduces aortic oxidative stress and reduces PTH, but the combination was not additive.Item The Dietary Fiber Inulin Slows Progression of Chronic Kidney Disease–Mineral Bone Disorder (CKD-MBD) in a Rat Model of CKD(Oxford University Press, 2023-12-07) Biruete, Annabel; Chen, Neal X.; Metzger, Corinne E.; Srinivasan, Shruthi; O’Neill, Kalisha; Fallen, Paul B.; Fonseca, Austin; Wilson, Hannah E.; de Loor, Henriette; Evenepoel, Pieter; Swanson, Kelly S.; Allen, Matthew R.; Moe, Sharon M.; Anatomy, Cell Biology and Physiology, School of MedicineChronic kidney disease (CKD)–mineral bone disorder (CKD‐MBD) leads to fractures and cardiovascular disease. Observational studies suggest beneficial effects of dietary fiber on both bone and cardiovascular outcomes, but the effect of fiber on CKD‐MBD is unknown. To determine the effect of fiber on CKD‐MBD, we fed the Cy/+ rat with progressive CKD a casein‐based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non‐fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30% and ~15% of normal kidney function; CKD 4 and 5). We assessed CKD‐MBD end points of biochemistry, bone quantity and quality, cardiovascular health, and cecal microbiota and serum gut‐derived uremic toxins. Results were analyzed by two‐way analysis of variance (ANOVA) to evaluate the main effects of CKD stage and inulin, and their interaction. The results showed that in CKD animals, inulin did not alter kidney function but reduced the increase from stage 4 to 5 in serum levels of phosphate and parathyroid hormone, but not fibroblast growth factor‐23 (FGF23). Bone turnover and cortical bone parameters were similarly improved but mechanical properties were not altered. Inulin slowed progression of aorta and cardiac calcification, left ventricular mass index, and fibrosis. To understand the mechanism, we assessed intestinal microbiota and found changes in alpha and beta diversity and significant changes in several taxa with inulin, together with a reduction in circulating gut derived uremic toxins such as indoxyl sulfate and short‐chain fatty acids. In conclusion, the addition of the fermentable fiber inulin to the diet of CKD rats led to a slowed progression of CKD‐MBD without affecting kidney function, likely mediated by changes in the gut microbiota composition and lowered gut‐derived uremic toxins.