- Browse by Author
Browsing by Author "O’Bryant, Sid E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparison of amyloid accumulation between Down syndrome and autosomal-dominant Alzheimer disease(Wiley, 2022) Boerwinkle, Anna H.; Gordon, Brian A.; Wisch, Julie K.; Flores, Shaney; Henson, Rachel L.; Butt, Omar Hameed; Chen, Charles D.; Benzinger, Tammie L. S.; Fagan, Anne M.; Handen, Benjamin L.; Christian, Bradley T.; Head, Elizabeth; Mapstone, Mark; Klunk, William E.; Rafii, Michael S.; O’Bryant, Sid E.; Price, Julie C.; Schupf, Nicole; Laymon, Charles M.; Krinsky-McHale, Sharon J.; Lai, Florence; Rosas, H. Diana; Hartley, Sigan L.; Zaman, Shahid; Lott, Ira T.; Silverman, Wayne; Brickman, Adam M.; Lee, Joseph H.; Allegri, Ricardo Francisco; Berman, Sarah; Chhatwal, Jasmeer P.; Chui, Helena C.; Cruchaga, Carlos; Farlow, Martin R.; Fox, Nick C.; Goate, Alison; Day, Gregory S.; Graff-Radford, Neill R.; Jucker, Mathias; Lee, Jae-Hong; Levin, Johannes; Martins, Ralph N.; Mori, Hiroshi; Perrin, Richard J.; Salloway, Stephen P.; Sanchez-Valle, Raquel; Schofield, Peter R.; Xiong, Chengjie; Karch, Celeste M.; Hassenstab, Jason J.; McDade, Eric; Bateman, Randall J.; Ances, Beau M.; Neurology, School of MedicineBackground: Given the triplication of chromosome 21 and the location of the amyloid precursor protein gene on chromosome 21, almost all adults with Down syndrome (DS) develop Alzheimer disease (AD)-like pathology and dementia during their lifetime. Comparing amyloid accumulation in DS to autosomal dominant AD (ADAD), another genetic form of AD, may improve our understanding of early AD pathology development. Method: We assessed amyloid positron emission tomography (PET) imaging in 192 participants with DS and 33 sibling controls from the Alzheimer’s Biomarker Consortium-Down Syndrome (ABC-DS) and 265 mutation-carriers (MC) and 169 familial controls from the Dominantly Inherited Alzheimer Network (DIAN) (Table 1). We calculated regional standard uptake value ratios (SUVR) using a cerebellar cortex reference region and converted global amyloid burden SUVR to centiloids. We compared amyloid PET by cognitive status and estimated-years-to-symptom-onset (EYO). EYO was calculated for DIAN participants by subtracting their age from parental age of symptom onset and for ABC-DS participants by subtracting their age from 50.2 years, a published average age of symptom onset in a large sample of individuals with DS (Fortea et al., 2020). In a subset of participants, we assessed the relationship between amyloid PET and CSF Aβ42/40. Result: The relationship between CSF Aβ42/40 and amyloid PET was similar in DS and MC participants (Figure 1). We did not observe significant differences between MC and DS grouped by cognitive status (Figure 2). However, when assessed over EYO, global amyloid burden was significantly elevated in MC at EYO ≥ -23 but was not elevated in DS until EYO ≥ -15 (Figure 3). We observed early cortical and subcortical amyloid PET increases in both groups, but we also measured some regional differences in amyloid PET changes between MC and DS, specifically in the medial occipital region (Figure 4 and 5). Conclusion: These results demonstrate similarities in the relationship between amyloid biomarkers and the levels of amyloid accumulation in ADAD and DS. However, we also observed a 5-10 year delay and some regional differences in amyloid accumulation in DS. This is important for future clinical trials to consider when recruiting participants and determining treatment efficacy.Item Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer's disease research(Elsevier, 2015-05) O’Bryant, Sid E.; Gupta, Veer; Henriksen, Kim; Edwards, Melissa; Jeromin, Andreas; Lista, Simone; Bazenet, Chantal; Soares, Holly; Lovestone, Simon; Hampel, Harald; Montine, Thomas; Blennow, Kaj; Foroud, Tatiana; Carrillo, Maria; Graff-Radford, Neill; Laske, Christoph; Breteler, Monique; Shaw, Leslie; Trojanowski, John Q.; Schupf, Nicole; Rissman, Robert A.; Fagan, Anne M.; Oberoi, Pankaj; Umek, Robert; Weiner, Michael W.; Grammas, Paul; Posner, Holly; Martins, Ralph; Department of Medical & Molecular Genetics, IU School of MedicineThe lack of readily available biomarkers is a significant hindrance towards progressing to effective therapeutic and preventative strategies for Alzheimer’s disease (AD). Blood-based biomarkers have potential to overcome access and cost barriers and greatly facilitate advanced neuroimaging and cerebrospinal fluid biomarker approaches. Despite the fact that preanalytical processing is the largest source of variability in laboratory testing, there are no currently available standardized preanalytical guidelines. The current international working group provides the initial starting point for such guidelines for standardized operating procedures (SOPs). It is anticipated that these guidelines will be updated as additional research findings become available. The statement provides (1) a synopsis of selected preanalytical methods utilized in many international AD cohort studies, (2) initial draft guidelines/SOPs for preanalytical methods, and (3) a list of required methodological information and protocols to be made available for publications in the field in order to foster cross-validation across cohorts and laboratories.