- Browse by Author
Browsing by Author "Nyström, Sofie"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease(National Academy of Sciences, 2017-12-05) Rasmussen, Jay; Mahler, Jasmin; Beschorner, Natalie; Kaeser, Stephan A.; Häsler, Lisa M.; Baumann, Frank; Nyström, Sofie; Portelius, Erik; Blennow, Kaj; Lashley, Tammaryn; Fox, Nick C.; Sepulveda-Falla, Diego; Glatzel, Markus; Oblak, Adrian L.; Ghetti, Bernardino; Nilsson, K. Peter R.; Hammarström, Per; Staufenbiel, Matthias; Walker, Lary C.; Jucker, Mathias; Pathology and Laboratory Medicine, School of MedicineThe molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of β-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aβ nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aβ plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aβ-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aβ among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aβ conformation and clinical phenotype.Item Dual-ligand fluorescence microscopy enables chronological and spatial histological assignment of distinct amyloid-β deposits(Elsevier, 2025) Klingstedt, Therése; Shirani, Hamid; Parvin, Farjana; Nyström, Sofie; Hammarström, Per; Graff, Caroline; Ingelsson, Martin; Vidal, Ruben; Ghetti, Bernardino; Sehlin, Dag; Syvänen, Stina; Nilsson, K. Peter. R.; Pathology and Laboratory Medicine, School of MedicineDifferent types of deposits comprised of amyloid-β (Aβ) peptides are one of the pathological hallmarks of Alzheimer's disease (AD) and novel methods that enable identification of a diversity of Aβ deposits during the AD continuum are essential for understanding the role of these aggregates during the pathogenesis. Herein, different combinations of five fluorescent thiophene-based ligands were used for detection of Aβ deposits in brain tissue sections from transgenic mouse models with aggregated Aβ pathology, as well as brain tissue sections from patients affected by sporadic or dominantly inherited AD. When analyzing the sections with fluorescence microscopy, distinct ligand staining patterns related to the transgenic mouse model or to the age of the mice were observed. Likewise, specific staining patterns of different Aβ deposits were revealed for sporadic versus dominantly inherited AD, as well as for distinct brain regions in sporadic AD. Thus, by using dual-staining protocols with multiple combinations of fluorescent ligands, a chronological and spatial histological designation of different Aβ deposits could be achieved. This study demonstrates the potential of our approach for resolving the role and presence of distinct Aβ aggregates during the AD continuum and pinpoints the necessity of using multiple ligands to obtain an accurate assignment of different Aβ deposits in the neuropathological evaluation of AD, as well as when evaluating therapeutic strategies targeting Aβ aggregates.