- Browse by Author
Browsing by Author "Nudelman, Kelly N. H."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Analysis of the Inverse Association between Cancer and Alzheimer’s Disease: Results from the Alzheimer’s Disease Neuroimaging Initiative Cohort(Office of the Vice Chancellor for Research, 2014-04-11) Nudelman, Kelly N. H.; Risacher, Shannon L.; West, John D.; Nho, Kwangsik; Ramanan, Vijay K.; McDonald, Brenna C.; Shen, Li; Foroud, Tatiana M.; Schneider, Bryan P.; Saykin, Andrew J.Although a number of studies support a reciprocal inverse association between diagnoses of cancer and Alzheimer’s disease (AD), to date there has not been any systemic investigation of the neurobiological impact of or genetic risk factors underlying this effect. To facilitate this goal, this study aimed to replicate the inverse association of cancer and AD using data from the NIA Alzheimer’s Disease Neuroimaging Initiative, which includes age-matched cases and controls with information on cancer history, AD progression, neuroimaging, and genomic data. Subjects included individuals with AD (n=234), mild cognitive impairment (MCI, n=542), and healthy controls (HC, n=293). After controlling for sex, education, race/ethnicity, smoking, and apolipoprotein E (APOE) e2/3/4 allele groups, cancer history was protective against baseline AD diagnosis (p=0.042), and was associated with later age of AD onset (p=0.001). Cancer history appears to result in a cumulative protective effect; individuals with more than one cancer had a later age of AD onset compared to those with only one cancer (p=0.001). Finally, a protective effect of AD was also observed in individuals who developed incident cancer after enrolling (post-baseline visit); 20 individuals with MCI and 9 HC developed cancer, while no AD patients had subsequent cancer diagnoses (p=0.013). This supports previous research on the inverse association of cancer and AD, and importantly provides novel evidence that this effect appears to be independent of APOE, the major known genetic risk factor for AD. Future analyses will investigate the neurobiological and genetic basis of this effect.Item Association of cancer history with Alzheimer's disease onset and structural brain changes(2014-10) Nudelman, Kelly N. H.; Risacher, Shannon L.; West, John D.; McDonald, Brenna C.; Gao, Sujuan; Saykin, Andrew J.; Department of Medical and Molecular Genetics, IU School of MedicineEpidemiological studies show a reciprocal inverse association between cancer and Alzheimer's disease (AD). The common mechanistic theory for this effect posits that cells have an innate tendency toward apoptotic or survival pathways, translating to increased risk for either neurodegeneration or cancer. However, it has been shown that cancer patients experience cognitive dysfunction pre- and post-treatment as well as alterations in cerebral gray matter density (GMD) on MRI. To further investigate these issues, we analyzed the association between cancer history (CA±) and age of AD onset, and the relationship between GMD and CA± status across diagnostic groups in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort study. Data was analyzed from 1609 participants with information on baseline cancer history and AD diagnosis, age of AD onset, and baseline MRI scans. Participants were CA+ (N = 503) and CA− (N = 1106) diagnosed with AD, mild cognitive impairment (MCI), significant memory concerns (SMC), and cognitively normal older adults. As in previous studies, CA+ was inversely associated with AD at baseline (P = 0.025); interestingly, this effect appears to be driven by non-melanoma skin cancer (NMSC), the largest cancer category in this study (P = 0.001). CA+ was also associated with later age of AD onset (P < 0.001), independent of apolipoprotein E (APOE) ε4 allele status, and individuals with two prior cancers had later mean age of AD onset than those with one or no prior cancer (P < 0.001), suggesting an additive effect. Voxel-based morphometric analysis of GMD showed CA+ had lower GMD in the right superior frontal gyrus compared to CA− across diagnostic groups (Pcrit < 0.001, uncorrected); this cluster of lower GMD appeared to be driven by history of invasive cancer types, rather than skin cancer. Thus, while cancer history is associated with a measurable delay in AD onset independent of APOE ε4, the underlying mechanism does not appear to be cancer-related preservation of GMD.Item Biological Hallmarks of Cancer in Alzheimer’s Disease(Elsevier, 2019-04-16) Nudelman, Kelly N. H.; McDonald, Brenna C.; Lahiri, Debomoy K.; Saykin, Andrew J.; Medical and Molecular Genetics, School of MedicineAlthough Alzheimer’s disease (AD) is an international health research priority for our aging population, little therapeutic progress has been made. This lack of progress may be partially attributable to disease heterogeneity. Previous studies have identified an inverse association of cancer and AD, suggesting that cancer history may be one source of AD heterogeneity. These findings are particularly interesting in light of the number of common risk factors and two-hit models hypothesized to commonly drive both diseases. We reviewed the ten hallmark biological alterations of cancer cells to investigate overlap with the AD literature and identified overlap of all ten hallmarks in AD, including: 1) potentially common underlying risk factors, such as increased inflammation, deregulated cellular energetics, and genome instability, 2) inversely regulated mechanisms, including cell death and evading growth suppressors, and 3) functions with more complex, pleiotropic mechanisms, some of which may be stage-dependent in AD, such as cell adhesion/contact inhibition and angiogenesis. Additionally, we discuss the recent observation of a biological link between cancer and AD neuropathology. Finally, we address the therapeutic implications of this topic. The significant overlap of functional pathways and molecules between these diseases, some similarly and some oppositely regulated or functioning in each disease, supports the need for more research to elucidate cancer-related AD genetic and functional heterogeneity, with the aims of better understanding AD risk mediators, as well as further exploring the potential for some types of drug repurposing towards AD therapeutic development.Item Cognitive dysfunction in cancer: Neuroimaging and genetic approaches to identify biological mechanisms(2015-04-22) Nudelman, Kelly N. H.; Saykin, Andrew J.; Foroud, Tatiana M.; McDonald, Brenna Cathleen; Schneider, Bryan Paul; Shen, LiAlthough cancer and treatment-associated cognitive dysfunction has been well-documented in the literature, much work remains to elucidate the biological mechanisms driving this effect, hampering current therapeutic efforts. To address this gap, we first reviewed studies utilizing neuroimaging to characterize cognitive dysfunction in cancer, as studies of neurodegenerative diseases point to neuroimaging as a sensitive measure of cognitive dysfunction. This review highlighted the need for longitudinal imaging studies of cancer and treatment-related changes in cerebral structure and function. Subsequently, we utilized multimodal neuroimaging techniques in a female breast cancer cohort to investigate the longitudinal impact of cancer and chemotherapy treatment on cerebral perfusion and gray matter. Our findings indicate that chemotherapy is associated with elevated perfusion, primarily in posterior brain regions, as well as depressed frontal perfusion associated with decreased frontal gray matter density. This pattern of results suggests the involvement of multiple mechanisms of chemotherapy-induced cognitive dysfunction. We also investigated the relationship of cognitive dysfunction and chemotherapy-induced peripheral neuropathy (CIPN), another type of chemotherapy-related nervous system sequelae, again utilizing multimodal, longitudinal neuroimaging, and found that peripheral neuropathy symptoms following chemotherapy were associated with changes in cerebral perfusion and gray matter density. Together, these findings support the hypothesis that multiple biological mechanisms drive cancer and treatment-related cognitive dysfunction. Interestingly, although cancer is associated with cognitive dysfunction, epidemiological studies have shown that cancer and Alzheimer's disease (AD) are inversely correlated. To extend our imaging analysis beyond breast cancer, we leveraged the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to investigate the inverse relationship of cancer and AD and investigate the impact of both of these diseases on gray matter density. We found that though the inverse relationship of these diseases was replicated in the ADNI cohort, cancer history was associated with lower gray matter density, similar to findings from breast cancer studies, independent of AD diagnostic group. Finally, we reviewed microRNA studies, as microRNAs are important regulators of many cell signaling pathways and have been actively investigated in relation to both diseases. This review suggests several pathways that may be driving the inverse association and may contribute to cognitive dysfunction.Item Evaluating the impact of chemotherapy-induced peripheral neuropathy symptoms (CIPN-sx) on perceived ability to work in breast cancer survivors during the first year post-treatment.(Springer, 2016) Zanville, Noah R.; Nudelman, Kelly N. H.; Smith, Dori J.; Von Ah, Diane; McDonald, Brenna C.; Champion, Victoria L.; Saykin, Andrew J.; IU School of NursingPurpose: To describe the impact of chemotherapy-induced peripheral neuropathy symptoms (CIPN-sx) on breast cancer survivors’ (BCS) perceived ability to work post-treatment. Methods: The sample included 22 chemotherapy-treated (Ctx+) and 22 chemotherapy-naïve (Ctx−) female BCS. Data was collected at the following three time points: baseline (post-surgery, pre-chemotherapy), 1 month (1 M) post-chemotherapy, and approximately 1 year (1 Y) later. The presence, frequency, number, and severity of CIPN-sx were self-reported using the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group–Neurotoxicity questionnaire (FACT/GOG-Ntx) version 4, a validated 11-item CIPN measure. Perceived ability to work was measured using an item from the Functional Well-Being subscale of the FACT/GOG-Ntx. Results: At 1 Y, more than 50 % of Ctx+ reported discomfort, numbness, or tingling in their hands or feet; weakness; or difficulty feeling small objects. The presence, number, and severity of these symptoms were correlated with being less able to work for Ctx+ at 1 M but not 1 Y. Results of a regression analysis using CIPN-sx to predict work ability found that models combining (1) hand numbness and trouble feeling small objects, (2) trouble buttoning buttons and trouble feeling small objects, (3) foot numbness and foot pain, (4) foot numbness and trouble walking, and (5) trouble hearing and hand pain each predicted survivors who were “not at all” able to work at 1 M. Conclusions: Unresolved CIPN-sx may play a role in challenges working for BCS post-treatment. These findings highlight the need for research to explore the impact that CIPN-sx have on BCS’ ability to work, as well as the development of interventions to improve work function in BCS with CIPN-sx.Item Harnessing peripheral DNA methylation differences in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease(Springer, 2020-06-15) Vasanthakumar, Aparna; Davis, Justin W.; Idler, Kenneth; Waring, Jeffrey F.; Asque, Elizabeth; Riley-Gillis, Bridget; Grosskurth, Shaun; Srivastava, Gyan; Kim, Sungeun; Nho, Kwangsik; Nudelman, Kelly N. H.; Faber, Kelley; Sun, Yu; Foroud, Tatiana M.; Estrada, Karol; Apostolova, Liana G.; Li, Qingqin S.; Saykin, Andrew J.; for the Alzheimer’s Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of MedicineBackground Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease impacting an estimated 44 million adults worldwide. The causal pathology of AD (accumulation of amyloid-beta and tau), precedes hallmark symptoms of dementia by more than a decade, necessitating development of early diagnostic markers of disease onset, particularly for new drugs that aim to modify disease processes. To evaluate differentially methylated positions (DMPs) as novel blood-based biomarkers of AD, we used a subset of 653 individuals with peripheral blood (PB) samples in the Alzheimer’s disease Neuroimaging Initiative (ADNI) consortium. The selected cohort of AD, mild cognitive impairment (MCI), and age-matched healthy controls (CN) all had imaging, genetics, transcriptomics, cerebrospinal protein markers, and comprehensive clinical records, providing a rich resource of concurrent multi-omics and phenotypic information on a well-phenotyped subset of ADNI participants. Results In this manuscript, we report cross-diagnosis differential peripheral DNA methylation in a cohort of AD, MCI, and age-matched CN individuals with longitudinal DNA methylation measurements. Epigenome-wide association studies (EWAS) were performed using a mixed model with repeated measures over time with a P value cutoff of 1 × 10−5 to test contrasts of pairwise differential peripheral methylation in AD vs CN, AD vs MCI, and MCI vs CN. The most highly significant differentially methylated loci also tracked with Mini Mental State Examination (MMSE) scores. Differentially methylated loci were enriched near brain and neurodegeneration-related genes (e.g., BDNF, BIN1, APOC1) validated using the genotype tissue expression project portal (GTex). Conclusions Our work shows that peripheral differential methylation between age-matched subjects with AD relative to healthy controls will provide opportunities to further investigate and validate differential methylation as a surrogate of disease. Given the inaccessibility of brain tissue, the PB-associated methylation marks may help identify the stage of disease and progression phenotype, information that would be central to bringing forward successful drugs for AD.Item Telomere Shortening in the Alzheimer’s Disease Neuroimaging Initiative Cohort(IOS Press, 2019-09-03) Nudelman, Kelly N. H.; Lin, Jue; Lane, Kathleen A.; Nho, Kwangsik; Kim, Sungeun; Faber, Kelley M.; Risacher, Shannon L.; Foroud, Tatiana M.; Gao, Sujuan; Davis, Justin W.; Weiner, Michael W.; Saykin, Andrew J.; Initiative for the Alzheimer’s Disease Neuroimaging; Medical and Molecular Genetics, School of MedicineBACKGROUND: Although shorter telomeres have been associated with Alzheimer’s disease (AD), it is unclear whether longitudinal change in telomere length is associated with AD progression. OBJECTIVE: To investigate the association of telomere length change with AD diagnosis and progression. METHODS: In 653 individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, T/S ratio (telomere vs. single copy gene), a proxy of telomere length, was measured for up to five visits per participant (N=1918 samples post-QC) using quantitative PCR (qPCR). T/S ratio was adjusted for batch effects and DNA storage time. A mixed effects model was used to evaluate association of telomere length with AD diagnostic group and interaction of age and diagnosis. Another mixed effects model was used to compare T/S ratio changes pre- to post-conversion to MCI or AD to telomere change in participants with stable diagnoses. RESULTS: Shorter telomeres were associated with older age (Effect Size (ES)=−0.23) and male sex (ES=−0.26). Neither baseline T/S ratio (ES=−0.036) nor T/S ratio change (ES=0.046) differed significantly between AD diagnostic groups. MCI/AD converters showed greater, but non-significant, telomere shortening compared to non-converters (ES=−0.186). CONCLUSIONS: Although AD compared to controls showed small, non-significant effects for baseline T/S ratio and T/S ratio shortening, we did observe a larger, though still non-significant effect for greater telomere shortening in converters compared to non-converters. Although our results do not support telomere shortening as a robust biomarker of AD progression, further investigation in larger samples and for subgroups of participants may be informative.Item Variants in the Mitochondrial Intermediate Peptidase (MIPEP) Gene are Associated with Gray Matter Density in the Alzheimer’s Disease Neuroimaging Initiative Cohort(Office of the Vice Chancellor for Research, 2015-04-17) Nudelman, Kelly N. H.; Risacher, Shannon L.; West, John D.; McDonald, Brenna C.; Gao, Su; Saykin, Andrew J.Cancer and Alzheimer’s disease (AD) incidence is inversely correlated, but the genetic underpinnings of this relationship remain to be elucidated. Recent findings identified lower gray matter density in frontal regions of participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with cancer history compared to those without such history, across diagnostic groups (Nudelman et al., 2014). Pathways proposed to impact cancer and AD, including metabolism and survival, may play an important role in the observed difference. To test this hypothesis, a genome-wide association study (GWAS) using mean frontal gray matter cluster values was performed for all Caucasian participants in this cohort with neuroimaging and genetic data (n=1405). Analysis covaried for age, sex, AD, and cancer history. Of the two genes with the most significant SNPs (p<10-5), WD repeat domain 5B (WDR5B) and mitochondrial intermediate peptidase (MIPEP), MIPEP was selected for further analysis given the hypothesis focus on metabolism. ANOVA analysis of MIPEP top SNP rs8181878 with frontal gray matter cluster values in SPSS indicated that while this SNP is significantly associated with gray matter density (p=2x10-6), no interaction was observed with cancer history or AD diagnosis. Furthermore, whole brain gray matter voxel-wise analysis of this SNP using Statistical Parametric Mapping 8 software showed that minor allele(s) of this SNP were significantly (PFWE<0.05) associated with higher gray matter density. These results suggest that the minor allele of MIPEP SNP rs8181878 may be protective against gray matter density loss, highlighting the importance of metabolic processes in aging and disease.