- Browse by Author
Browsing by Author "Notari, Silvio"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Clinicopathological Correlates in a PRNP P102L Mutation Carrier with Rapidly Progressing Parkinsonism-dystonia(Wiley, 2016-07) Umeh, Chizoba C.; Kalakoti, Piyush; Greenberg, Michael K.; Notari, Silvio; Cohen, Yvonne; Gambetti, Pierluigi; Oblak, Adrian L.; Ghetti, Bernardino; Mari, Zoltan; Pathology and Laboratory Medicine, School of MedicineParkinsonism-dystonia is rare in carriers of PRNP P102L mutation. Severity and distribution of prion protein (PrP) deposition may influence the clinical presentation. We present such clinic-pathological correlation in a 56-year-old male with a PRNP P102L mutation associated with a phenotype characterized by rapidly progressing parkinsonism-dystonia. The patient was studied clinically (videotaped exams, brain MRIs); molecular genetically (gene sequence analysis); and neuropathologically (histology, immunohistochemistry) during his 7-month disease course. The patient had parkinsonism, apraxia, aphasia, and dystonia, which progressed rapidly. Molecular genetic analysis revealed PRNP P102L mutation carrier status. Brain MRIs revealed progressive global volume loss and T2/FLAIR hyperintensity in neocortex and basal ganglia. Postmortem examination showed neuronal loss, gliosis, spongiform changes, and PrP deposition in the striatum. PrP immunohistochemistry revealed widespread severe PrP deposition in the thalamus and cerebellar cortex. Based on the neuropathological and molecular-genetic analysis, the rapidly progressing parkinsonism-dystonia correlated with nigrostriatal, thalamic, and cerebellar pathology.Item Efficient transmission of human prion diseases to a glycan-free prion protein-expressing host(Oxford University Press, 2024) Cracco, Laura; Cali, Ignazio; Cohen, Mark L.; Aslam, Rabail; Notari, Silvio; Kong, Qingzhong; Newell, Kathy L.; Ghetti, Bernardino; Appleby, Brian S.; Gambetti, Pierluigi; Pathology and Laboratory Medicine, School of MedicineIt is increasingly evident that the association of glycans with the prion protein (PrP), a major post-translational modification, significantly impacts the pathogenesis of prion diseases. A recent bioassay study has provided evidence that the presence of PrP glycans decreases spongiform degeneration and disease-related PrP (PrPD) deposition in a murine model. We challenged (PRNPN181Q/197Q) transgenic (Tg) mice expressing glycan-free human PrP (TgGlyc-), with isolates from sporadic Creutzfeldt-Jakob disease subtype MM2 (sCJDMM2), sporadic fatal insomnia and familial fatal insomnia, three human prion diseases that are distinct but share histotypic and PrPD features. TgGlyc- mice accurately replicated the basic histotypic features associated with the three diseases but the transmission was characterized by high attack rates, shortened incubation periods and a greatly increased severity of the histopathology, including the presence of up to 40 times higher quantities of PrPD that formed prominent deposits. Although the engineered protease-resistant PrPD shared at least some features of the secondary structure and the presence of the anchorless PrPD variant with the wild-type PrPD, it exhibited different density gradient profiles of the PrPD aggregates and a higher stability index. The severity of the histopathological features including PrP deposition appeared to be related to the incubation period duration. These findings are clearly consistent with the protective role of the PrP glycans but also emphasize the complexity of the conformational changes that impact PrPD following glycan knockout. Future studies will determine whether these features apply broadly to other human prion diseases or are PrPD-type dependent.Item Gerstmann-Sträussler-Scheinker disease revisited: accumulation of covalently-linked multimers of internal prion protein fragments(Biomed Central, 2019-05-29) Cracco, Laura; Xiao, Xiangzhu; Nemani, Satish K.; Lavrich, Jody; Cali, Ignazio; Ghetti, Bernardino; Notari, Silvio; Surewicz, Witold K.; Gambetti, Pierluigi; Pathology and Laboratory Medicine, School of MedicineDespite their phenotypic heterogeneity, most human prion diseases belong to two broadly defined groups: Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker disease (GSS). While the structural characteristics of the disease-related proteinase K-resistant prion protein (resPrPD) associated with the CJD group are fairly well established, many features of GSS-associated resPrPD are unclear. Electrophoretic profiles of resPrPD associated with GSS variants typically show 6-8 kDa bands corresponding to the internal PrP fragments as well as a variable number of higher molecular weight bands, the molecular nature of which has not been investigated. Here we have performed systematic studies of purified resPrPD species extracted from GSS cases with the A117V (GSSA117V) and F198S (GSSF198S) PrP gene mutations. The combined analysis based on epitope mapping, deglycosylation treatment and direct amino acid sequencing by mass spectrometry provided a conclusive evidence that high molecular weight resPrPD species seen in electrophoretic profiles represent covalently-linked multimers of the internal ~ 7 and ~ 8 kDa fragments. This finding reveals a mechanism of resPrPD aggregate formation that has not been previously established in prion diseases.Item Incidence and spectrum of sporadic Creutzfeldt–Jakob disease variants with mixed phenotype and co-occurrence of PrPSc types: an updated classification(Springer, 2009-11-01) Parchi, Piero; Strammiello, Rosaria; Notari, Silvio; Giese, Armin; Langeveld, Jan P. M.; Ladogana, Anna; Zerr, Inga; Roncaroli, Federico; Cras, Patrich; Ghetti, Bernardino; Pocchiari, Maurizio; Kretzschmar, Hans; Capellari, Sabina; Pathology and Laboratory Medicine, IU School of MedicineSix subtypes of sporadic Creutzfeldt–Jakob disease with distinctive clinico-pathological features have been identified largely based on two types of the abnormal prion protein, PrPSc, and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein. The existence of affected subjects showing mixed phenotypic features and concurrent PrPSc types has been reported but with inconsistencies among studies in both results and their interpretation. The issue currently complicates diagnosis and classification of cases and also has implications for disease pathogenesis. To explore the issue in depth, we carried out a systematic regional study in a large series of 225 cases. PrPSc types 1 and 2 concurrence was detected in 35% of cases and was higher in MM than in MV or VV subjects. The deposition of either type 1 or 2, when concurrent, was not random and always characterized by the coexistence of phenotypic features previously described in the pure subtypes. PrPSc type 1 accumulation and related pathology predominated in MM and MV cases, while the type 2 phenotype prevailed in VVs. Neuropathological examination best identified the mixed types 1 and 2 features in MMs and most MVs, and also uniquely revealed the co-occurrence of pathological variants sharing PrPSc type 2. In contrast, molecular typing best detected the concurrent PrPSc types in VV subjects and MV cases with kuru plaques. The present data provide an updated disease classification and are of importance for future epidemiologic and transmission studies aimed to identify etiology and extent of strain variation in sporadic Creutzfeldt–Jakob disease.