- Browse by Author
Browsing by Author "Nitta, Hiroaki"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Multiparameter Molecular Classifier to Predict Response to Neoadjuvant Lapatinib plus Trastuzumab without Chemotherapy in HER2+ Breast Cancer(American Association for Cancer Research, 2023) Veeraraghavan, Jamunarani; Gutierrez, Carolina; De Angelis, Carmine; Davis, Robert; Wang, Tao; Pascual, Tomas; Selenica, Pier; Sanchez, Katherine; Nitta, Hiroaki; Kapadia, Monesh; Pavlick, Anne C.; Galvan, Patricia; Rexer, Brent; Forero-Torres, Andres; Nanda, Rita; Storniolo, Anna M.; Krop, Ian E.; Goetz, Matthew P.; Nangia, Julie R.; Wolff, Antonio C.; Weigelt, Britta; Reis-Filho, Jorge S.; Hilsenbeck, Susan G.; Prat, Aleix; Osborne, C. Kent; Schiff, Rachel; Rimawi, Mothaffar F.; Medicine, School of MedicinePurpose: Clinical trials reported 25% to 30% pathologic complete response (pCR) rates in HER2+ patients with breast cancer treated with anti-HER2 therapies without chemotherapy. We hypothesize that a multiparameter classifier can identify patients with HER2-"addicted" tumors who may benefit from a chemotherapy-sparing strategy. Experimental design: Baseline HER2+ breast cancer specimens from the TBCRC023 and PAMELA trials, which included neoadjuvant treatment with lapatinib and trastuzumab, were used. In the case of estrogen receptor-positive (ER+) tumors, endocrine therapy was also administered. HER2 protein and gene amplification (ratio), HER2-enriched (HER2-E), and PIK3CA mutation status were assessed by dual gene protein assay (GPA), research-based PAM50, and targeted DNA-sequencing. GPA cutoffs and classifier of response were constructed in TBCRC023 using a decision tree algorithm, then validated in PAMELA. Results: In TBCRC023, 72 breast cancer specimens had GPA, PAM50, and sequencing data, of which 15 had pCR. Recursive partitioning identified cutoffs of HER2 ratio ≥ 4.6 and %3+ IHC staining ≥ 97.5%. With PAM50 and sequencing data, the model added HER2-E and PIK3CA wild-type (WT). For clinical implementation, the classifier was locked as HER2 ratio ≥ 4.5, %3+ IHC staining ≥ 90%, and PIK3CA-WT and HER2-E, yielding 55% and 94% positive (PPV) and negative (NPV) predictive values, respectively. Independent validation using 44 PAMELA cases with all three biomarkers yielded 47% PPV and 82% NPV. Importantly, our classifier's high NPV signifies its strength in accurately identifying patients who may not be good candidates for treatment deescalation. Conclusions: Our multiparameter classifier differentially identifies patients who may benefit from HER2-targeted therapy alone from those who need chemotherapy and predicts pCR to anti-HER2 therapy alone comparable with chemotherapy plus dual anti-HER2 therapy in unselected patients.Item Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images(Springer Nature, 2023-01-27) Huang, Zhi; Shao, Wei; Han, Zhi; Alkashash, Ahmad Mahmoud; De la Sancha, Carlo; Parwani, Anil V.; Nitta, Hiroaki; Hou, Yanjun; Wang, Tongxin; Salama, Paul; Rizkalla, Maher; Zhang, Jie; Huang, Kun; Li, Zaibo; Electrical and Computer Engineering, School of Engineering and TechnologyAdvances in computational algorithms and tools have made the prediction of cancer patient outcomes using computational pathology feasible. However, predicting clinical outcomes from pre-treatment histopathologic images remains a challenging task, limited by the poor understanding of tumor immune micro-environments. In this study, an automatic, accurate, comprehensive, interpretable, and reproducible whole slide image (WSI) feature extraction pipeline known as, IMage-based Pathological REgistration and Segmentation Statistics (IMPRESS), is described. We used both H&E and multiplex IHC (PD-L1, CD8+, and CD163+) images, investigated whether artificial intelligence (AI)-based algorithms using automatic feature extraction methods can predict neoadjuvant chemotherapy (NAC) outcomes in HER2-positive (HER2+) and triple-negative breast cancer (TNBC) patients. Features are derived from tumor immune micro-environment and clinical data and used to train machine learning models to accurately predict the response to NAC in breast cancer patients (HER2+ AUC = 0.8975; TNBC AUC = 0.7674). The results demonstrate that this method outperforms the results trained from features that were manually generated by pathologists. The developed image features and algorithms were further externally validated by independent cohorts, yielding encouraging results, especially for the HER2+ subtype.