ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ning, Xia"

Now showing 1 - 10 of 27
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    ALE: Additive Latent Effect Models for Grade Prediction
    (Society for Industrial and Applied Mathematics, 2018) Ren, Zhiyun; Ning, Xia; Rangwala, Huzefa; Medical and Molecular Genetics, School of Medicine
    The past decade has seen a growth in the development and deployment of educational technologies for assisting college-going students in choosing majors, selecting courses and acquiring feedback based on past academic performance. Grade prediction methods seek to estimate a grade that a student may achieve in a course that she may take in the future (e.g., next term). Accurate and timely prediction of students' academic grades is important for developing effective degree planners and early warning systems, and ultimately improving educational outcomes. Existing grade prediction methods mostly focus on modeling the knowledge components associated with each course and student, and often overlook other factors such as the difficulty of each knowledge component, course instructors, student interest, capabilities and effort. In this paper, we propose additive latent effect models that incorporate these factors to predict the student next-term grades. Specifically, the proposed models take into account four factors: (i) student's academic level, (ii) course instructors, (iii) student global latent factor, and (iv) latent knowledge factors. We compared the new models with several state-of-the-art methods on students of various characteristics (e.g., whether a student transferred in or not). The experimental results demonstrate that the proposed methods significantly outperform the baselines on grade prediction problem. Moreover, we perform a thorough analysis on the importance of different factors and how these factors can practically assist students in course selection, and finally improve their academic performance.
  • Loading...
    Thumbnail Image
    Item
    Correction to: The International Conference on Intelligent Biology and Medicine 2019 (ICIBM 2019): conference summary and innovations in genomic
    (BMJ Publishing Group, 2020-05-06) Mathé, Ewy; Zhang, Chi; Wang, Kai; Ning, Xia; Guo, Yan; Zhao, Zhongming; Medical and Molecular Genetics, School of Medicine
    After publication of this supplement article [1], it is requested the grant ID in the Funding section should be corrected from NSF grant IIS-7811367 to NSF grant IIS-1902617. Therefore, the correct ‘Funding’ section in this article should read: This article has not received sponsorship for publication. We thank the National Science Foundation (NSF grant IIS-1902617) and the Data Science and Informatics Core for Cancer Research (CPRIT grant RP170668) for the financial support of ICIBM 2019, as well as the support from Cancer Prevention and Research Institute of Texas (RP180734).
  • Loading...
    Thumbnail Image
    Item
    Correction to: The International Conference on Intelligent Biology and Medicine 2019: computational methods for drug interactions
    (BMC, 2020) Ning, Xia; Zhang, Chi; Wang, Kai; Zhao, Zhongming; Mathé, Ewy; Medical and Molecular Genetics, School of Medicine
    After publication of this supplement article [1], it is requested the grant ID in the Funding section should be corrected from NSF grant IIS-7811367 to NSF grant IIS-1902617.
  • Loading...
    Thumbnail Image
    Item
    Differential Compound Prioritization via Bidirectional Selectivity Push with Power
    (ACS, 2017-12) Liu, Junfeng; Ning, Xia; Computer and Information Science, School of Science
    Effective in silico compound prioritization is a critical step to identify promising drug candidates in the early stages of drug discovery. Current computational methods for compound prioritization usually focus on ranking the compounds based on one property, typically activity, with respect to a single target. However, compound selectivity is also a key property which should be deliberated simultaneously so as to minimize the likelihood of undesired side effects of future drugs. In this paper, we present a novel machine-learning based differential compound prioritization method dCPPP. This dCPPP method learns compound prioritization models that rank active compounds well, and meanwhile, preferably rank selective compounds higher via a bidirectional selectivity push strategy. The bidirectional push is enhanced by push powers that are determined by ranking difference of selective compounds over multiple bioassays. Our experiments demonstrate that the new method dCPPP achieves significant improvement on prioritizing selective compounds over baseline models.
  • Loading...
    Thumbnail Image
    Item
    Drug Selection via Joint Push and Learning to Rank
    (IEEE, 2018-06) He, Yicheng; Liu, Junfeng; Ning, Xia; Medical and Molecular Genetics, School of Medicine
    Selecting the right drugs for the right patients is a primary goal of precision medicine. In this manuscript, we consider the problem of cancer drug selection in a learning-to-rank framework. We have formulated the cancer drug selection problem as to accurately predicting 1). the ranking positions of sensitive drugs and 2). the ranking orders among sensitive drugs in cancer cell lines based on their responses to cancer drugs. We have developed a new learning-to-rank method, denoted as pLETORg, that predicts drug ranking structures in each cell line via using drug latent vectors and cell line latent vectors. The pLETORg method learns such latent vectors through explicitly enforcing that, in the drug ranking list of each cell line, the sensitive drugs are pushed above insensitive drugs, and meanwhile the ranking orders among sensitive drugs are correct. Genomics information on cell lines is leveraged in learning the latent vectors. Our experimental results on a benchmark cell line-drug response dataset demonstrate that the new pLETORg significantly outperforms the state-of-the-art method in prioritizing new sensitive drugs.
  • Loading...
    Thumbnail Image
    Item
    Ensemble methods for top-N recommendation
    (2018-04-20) Fan, Ziwei; Ning, Xia
    As the amount of information grows, the desire to efficiently filter out unnecessary information and retain relevant or interested information for people is increasing. To extract the information that will be of interest to people efficiently, we can utilize recommender systems. Recommender systems are information filtering systems that predict the preference of a user to an item. Based on historical data of users, recommender systems are able to make relevant recommendations to users. Due to its usefulness, Recommender systems have been widely used in many applications, including e-commerce and healthcare information systems. However, existing recommender systems suffer from several issues, including data sparsity and user/item heterogeneity. In this thesis, a hybrid dynamic and multi-collaborative filtering based recommendation technique has been developed to recommend search terms for physicians when physicians review a large number of patients’ information. Besides, a local sparse linear method ensemble has been developed to tackle the issues of data sparsity and user/item heterogeneity. In health information technology systems, most physicians suffer from information overload when they review patient information. A novel hybrid dynamic and multi-collaborative filtering method has been developed to improve information retrieval from electronic health records. We tackle the problem of recommending the next search term to a physician while the physician is searching for information about a patient. In this method, I have combined first-order Markov Chain and multi-collaborative filtering methods. For multi-collaborative filtering methods, I have developed the physician-patient collaborative filtering and transition-involved collaborative filtering methods. The developed method is tested using electronic health record data from the Indiana Network for Patient Care. The experimental results demonstrate that for 46.7% of test cases, this new method is able to correctly prioritize relevant information among top-5 recommendations that physicians are truly interested in. The local sparse linear model ensemble has been developed to tackle both the data sparsity and the user/item heterogeneity issues for the top-n recommendation. Multiple local sparse linear models are learned for all the users and items in the system. I have developed similarity-based and popularity-based methods to determine the local training data for each local model. Each local model is trained on Sparse Linear Method (SLIM) which is a powerful recommendation technique for top-n recommendation. These learned models are then combined in various ways to produce top-N recommendations. I have developed model results combination and model combination methods to combine all learned local models. The developed methods are tested on a benchmark dataset and its sparsified datasets. The experiments demonstrate 18.4% improvement from such ensemble models, particularly on sparse datasets.
  • Loading...
    Thumbnail Image
    Item
    EnvCNN: A Convolutional Neural Network Model for Evaluating Isotopic Envelopes in Top-Down Mass-Spectral Deconvolution
    (ACS, 2020-06) Basharat, Abdul Rehman; Ning, Xia; Liu, Xiaowen; BioHealth Informatics, School of Informatics and Computing
    Top-down mass spectrometry has become the main method for intact proteoform identification, characterization, and quantitation. Because of the complexity of top-down mass spectrometry data, spectral deconvolution is an indispensable step in spectral data analysis, which groups spectral peaks into isotopic envelopes and extracts monoisotopic masses of precursor or fragment ions. The performance of spectral deconvolution methods relies heavily on their scoring functions, which distinguish correct envelopes from incorrect ones. A good scoring function increases the accuracy of deconvoluted masses reported from mass spectra. In this paper, we present EnvCNN, a convolutional neural network-based model for evaluating isotopic envelopes. We show that the model outperforms other scoring functions in distinguishing correct envelopes from incorrect ones and that it increases the number of identifications and improves the statistical significance of identifications in top-down spectral interpretation.
  • Loading...
    Thumbnail Image
    Item
    Evaluation of Machine Learning Models for Proteoform Retention and Migration Time Prediction in Top-Down Mass Spectrometry
    (American Chemical Society, 2022) Chen, Wenrong; McCool, Elijah N.; Sun, Liangliang; Zang, Yong; Ning, Xia; Liu, Xiaowen; BioHealth Informatics, School of Informatics and Computing
    Reversed-phase liquid chromatography (RPLC) and capillary zone electrophoresis (CZE) are two primary proteoform separation methods in mass spectrometry (MS)-based top-down proteomics. Proteoform retention time (RT) prediction in RPLC and migration time (MT) prediction in CZE provide additional information for accurate proteoform identification and quantification. While existing methods are mainly focused on peptide RT and MT prediction in bottom-up MS, there is still a lack of methods for proteoform RT and MT prediction in top-down MS. We systematically evaluated eight machine learning models and a transfer learning method for proteoform RT prediction and five models and the transfer learning method for proteoform MT prediction. Experimental results showed that a gated recurrent unit (GRU)-based model with transfer learning achieved a high accuracy (R = 0.978) for proteoform RT prediction and that the GRU-based model and a fully connected neural network model obtained a high accuracy of R = 0.982 and 0.981 for proteoform MT prediction, respectively.
  • Loading...
    Thumbnail Image
    Item
    Hybrid Collaborative Filtering Methods for Recommending Search Terms to Clinicians
    (Elsevier, 2021) Ren, Zhiyun; Peng, Bo; Schleyer, Titus K.; Ning, Xia; Medicine, School of Medicine
    With increasing and extensive use of electronic health records (EHR), clinicians are often challenged in retrieving relevant patient information efficiently and effectively to arrive at a diagnosis. While using the search function built into an EHR can be more useful than browsing in a voluminous patient record, it is cumbersome and repetitive to search for the same or similar information on similar patients. To address this challenge, there is a critical need to build effective recommender systems that can recommend search terms to clinicians accurately. In this study, we developed a hybrid collaborative filtering model to recommend search terms for a specific patient to a clinician. The model draws on information from patients' clinical encounters and the searches that were performed during them. To generate recommendations, the model uses search terms which are (1) frequently co-occurring with the ICD codes recorded for the patient and (2) highly relevant to the most recent search terms. In one variation of the model (Hybrid Collaborative Filtering Method for Healthcare, or HCFMH), we use only the most recent ICD codes assigned to the patient, and in the other (Co-occurrence Pattern based HCFMH, or cpHCFMH), all ICD codes. We have conducted comprehensive experiments to evaluate the proposed model. These experiments demonstrate that our model outperforms state-of-the-art baseline methods for top-N search term recommendation on different data sets.
  • Loading...
    Thumbnail Image
    Item
    Improving information retrieval from electronic health records using dynamic and multi-collaborative filtering
    (IEEE, 2019) Fan, Ziwei; Burgun, Evan; Ren, Zhiyun; Schleyer, Titus; Ning, Xia; Medicine, School of Medicine
    Due to the rapid growth of information available about individual patients, most physicians suffer from information overload when they review patient information in health information technology systems. In this manuscript, we present a novel hybrid dynamic and multi-collaborative filtering method to improve information retrieval from electronic health records. This method recommends relevant information from electronic health records for physicians during patient visits. It models information search dynamics using a Markov model. It also leverages the key idea of collaborative filtering, originating from Recommender Systems, to prioritize information based on various similarities among physicians, patients and information items We tested this new method using real electronic health record data from the Indiana Network for Patient Care. Our experimental results demonstrated that for 46.7% of test cases, this new method is able to correctly prioritize relevant information among top-5 recommendations that physicians are truly interested in.
  • «
  • 1 (current)
  • 2
  • 3
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University