- Browse by Author
Browsing by Author "Niculescu, A. B."
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Blood biomarkers for memory: toward early detection of risk for Alzheimer disease, pharmacogenomics, and repurposed drugs(Nature Publishing Group, 2019-12-02) Niculescu, A. B.; Le-Niculescu, H.; Roseberry, K.; Wang, S.; Hart, J.; Kaur, A.; Robertson, H.; Jones, T.; Strasburger, A.; Williams, A.; Kurian, S. M.; Lamb, B.; Shekhar, A.; Lahiri, D. K.; Saykin, A. J.; Psychiatry, School of MedicineShort-term memory dysfunction is a key early feature of Alzheimer’s disease (AD). Psychiatric patients may be at higher risk for memory dysfunction and subsequent AD due to the negative effects of stress and depression on the brain. We carried out longitudinal within-subject studies in male and female psychiatric patients to discover blood gene expression biomarkers that track short term memory as measured by the retention measure in the Hopkins Verbal Learning Test. These biomarkers were subsequently prioritized with a convergent functional genomics approach using previous evidence in the field implicating them in AD. The top candidate biomarkers were then tested in an independent cohort for ability to predict state short-term memory, and trait future positive neuropsychological testing for cognitive impairment. The best overall evidence was for a series of new, as well as some previously known genes, which are now newly shown to have functional evidence in humans as blood biomarkers: RAB7A, NPC2, TGFB1, GAP43, ARSB, PER1, GUSB, and MAPT. Additional top blood biomarkers include GSK3B, PTGS2, APOE, BACE1, PSEN1, and TREM2, well known genes implicated in AD by previous brain and genetic studies, in humans and animal models, which serve as reassuring de facto positive controls for our whole-genome gene expression discovery approach. Biological pathway analyses implicate LXR/RXR activation, neuroinflammation, atherosclerosis signaling, and amyloid processing. Co-directionality of expression data provide new mechanistic insights that are consistent with a compensatory/scarring scenario for brain pathological changes. A majority of top biomarkers also have evidence for involvement in other psychiatric disorders, particularly stress, providing a molecular basis for clinical co-morbidity and for stress as an early precipitant/risk factor. Some of them are modulated by existing drugs, such as antidepressants, lithium and omega-3 fatty acids. Other drug and nutraceutical leads were identified through bioinformatic drug repurposing analyses (such as pioglitazone, levonorgestrel, salsolidine, ginkgolide A, and icariin). Our work contributes to the overall pathophysiological understanding of memory disorders and AD. It also opens new avenues for precision medicine- diagnostics (assement of risk) as well as early treatment (pharmacogenomically informed, personalized, and preventive).Item Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism(Springer Nature, 2011-04-26) Le-Niculescu, H.; Case, N. J.; Hulvershorn, L.; Patel, S. D.; Bowker, D.; Gupta, J.; Bell, R.; Edenberg, H. J.; Tsuang, M. T.; Kuczenski, R.; Geyer, M. A.; Rodd, Z. A.; Niculescu, A. B.; Psychiatry, School of MedicineOmega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.Item Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms(Springer Nature, 2011-05-24) Le-Niculescu, H.; Balaraman, Y.; Patel, S. D.; Ayalew, M.; Gupta, J.; Kuczenski, R.; Shekhar, A.; Schork, N.; Geyer, M. A.; Niculescu, A. B.; Psychiatry, School of MedicineAnxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug--yohimbine, and an anti-anxiety drug--diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain-blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders--notably signal transduction and reactivity to environment, with a prominent role for the hippocampus. Overall, this work complements our previous similar work (on bipolar mood disorders and schizophrenia) conducted over the last decade. It concludes our programmatic first pass mapping of the genomic landscape of the triad of major psychiatric disorder domains using CFG, and permitted us to uncover the significant genetic overlap between anxiety and these other major psychiatric disorders, notably the under-appreciated overlap with schizophrenia. PDE10A, TAC1 and other genes uncovered by our work provide a molecular basis for the frequently observed clinical co-morbidity and interdependence between anxiety and other major psychiatric disorders, and suggest schizo-anxiety as a possible new nosological domain.Item Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction(Springer Nature, 2012) Ayalew, M.; Le-Niculescu, H.; Levey, D. F.; Jain, N.; Changala, B.; Patel, S. D.; Winiger, E.; Breier, A.; Shekhar, A.; Amdur, R.; Koller, D.; Nurnberger, J. I.; Corvin, A.; Geyer, M.; Tsuang, M. T.; Salomon, D.; Schork, N. J.; Fanous, A. H.; O’Donovan, M. C.; Niculescu, A. B.; Psychiatry, School of MedicineWe have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.Item Convergent functional genomics of stem cell-derived cells(Springer Nature, 2013-09-10) Niculescu, A. B.; Psychiatry, School of MedicineStem cell technologies provide an exciting avenue to directly access the transcriptome of patients in neuronal-like cell types, which might have more direct relevance to brain research than other peripheral tissues (blood, fibroblasts). Enthusiasm should be tempered by concerns that artifacts and noise might be generated as part of the in vitro process of creating and maintaining these cell type. A solution may be to apply a Convergent Functional Genomics approach, where the data from stem cell-derived neuronal cells are integrated, cross-validated and prioritized using independent lines of evidence from other approaches and platforms (human genetic data, human postmortem brain data, animal model data). I provide a brief overview and an example in support of such an approach.Item Genetic risk prediction and neurobiological understanding of alcoholism(Springer Nature, 2014-05-20) Levey, D. F.; Le-Niculescu, H.; Frank, J.; Ayalew, M.; Jain, N.; Kirlin, B.; Learman, R.; Winiger, E.; Rodd, Z.; Shekhar, A.; Schork, N.; Kiefe, F.; Wodarz, N.; Müller-Myhsok, B.; Dahmen, N.; GESGA Consortium; Nöthen, M.; Sherva, R.; Farrer, L.; Smith, A. H.; Kranzler, H. R.; Rietschel, M.; Gelernter, J.; Niculescu, A. B.; Psychiatry, School of MedicineWe have used a translational Convergent Functional Genomics (CFG) approach to discover genes involved in alcoholism, by gene-level integration of genome-wide association study (GWAS) data from a German alcohol dependence cohort with other genetic and gene expression data, from human and animal model studies, similar to our previous work in bipolar disorder and schizophrenia. A panel of all the nominally significant P-value SNPs in the top candidate genes discovered by CFG (n=135 genes, 713 SNPs) was used to generate a genetic risk prediction score (GRPS), which showed a trend towards significance (P=0.053) in separating alcohol dependent individuals from controls in an independent German test cohort. We then validated and prioritized our top findings from this discovery work, and subsequently tested them in three independent cohorts, from two continents. A panel of all the nominally significant P-value single-nucleotide length polymorphisms (SNPs) in the top candidate genes discovered by CFG (n=135 genes, 713 SNPs) were used to generate a Genetic Risk Prediction Score (GRPS), which showed a trend towards significance (P=0.053) in separating alcohol-dependent individuals from controls in an independent German test cohort. In order to validate and prioritize the key genes that drive behavior without some of the pleiotropic environmental confounds present in humans, we used a stress-reactive animal model of alcoholism developed by our group, the D-box binding protein (DBP) knockout mouse, consistent with the surfeit of stress theory of addiction proposed by Koob and colleagues. A much smaller panel (n=11 genes, 66 SNPs) of the top CFG-discovered genes for alcoholism, cross-validated and prioritized by this stress-reactive animal model showed better predictive ability in the independent German test cohort (P=0.041). The top CFG scoring gene for alcoholism from the initial discovery step, synuclein alpha (SNCA) remained the top gene after the stress-reactive animal model cross-validation. We also tested this small panel of genes in two other independent test cohorts from the United States, one with alcohol dependence (P=0.00012) and one with alcohol abuse (a less severe form of alcoholism; P=0.0094). SNCA by itself was able to separate alcoholics from controls in the alcohol-dependent cohort (P=0.000013) and the alcohol abuse cohort (P=0.023). So did eight other genes from the panel of 11 genes taken individually, albeit to a lesser extent and/or less broadly across cohorts. SNCA, GRM3 and MBP survived strict Bonferroni correction for multiple comparisons. Taken together, these results suggest that our stress-reactive DBP animal model helped to validate and prioritize from the CFG-discovered genes some of the key behaviorally relevant genes for alcoholism. These genes fall into a series of biological pathways involved in signal transduction, transmission of nerve impulse (including myelination) and cocaine addiction. Overall, our work provides leads towards a better understanding of illness, diagnostics and therapeutics, including treatment with omega-3 fatty acids. We also examined the overlap between the top candidate genes for alcoholism from this work and the top candidate genes for bipolar disorder, schizophrenia, anxiety from previous CFG analyses conducted by us, as well as cross-tested genetic risk predictions. This revealed the significant genetic overlap with other major psychiatric disorder domains, providing a basis for comorbidity and dual diagnosis, and placing alcohol use in the broader context of modulating the mental landscape.Item Mood, stress and longevity: convergence on ANK3(Springer Nature, 2016) Rangaraju, S.; Levey, D. F.; Nho, K.; Jain, N.; Andrews, K. D.; Le-Niculescu, H.; Salomon, D. R.; Saykin, A. J.; Petrascheck, M.; Niculescu, A. B.; Psychiatry, School of MedicineAntidepressants have been shown to improve longevity in C. elegans. It is plausible that orthologs of genes involved in mood regulation and stress response are involved in such an effect. We sought to understand the underlying biology. First, we analyzed the transcriptome from worms treated with the antidepressant mianserin, previously identified in a large-scale unbiased drug screen as promoting increased lifespan in worms. We identified the most robust treatment-related changes in gene expression, and identified the corresponding human orthologs. Our analysis uncovered a series of genes and biological pathways that may be at the interface between antidepressant effects and longevity, notably pathways involved in drug metabolism/degradation (nicotine and melatonin). Second, we examined which of these genes overlap with genes which may be involved in depressive symptoms in an aging non-psychiatric human population (n=3577), discovered using a genome-wide association study (GWAS) approach in a design with extremes of distribution of phenotype. Third, we used a convergent functional genomics (CFG) approach to prioritize these genes for relevance to mood disorders and stress. The top gene identified was ANK3. To validate our findings, we conducted genetic and gene-expression studies, in C. elegans and in humans. We studied C. elegans inactivating mutants for ANK3/unc-44, and show that they survive longer than wild-type, particularly in older worms, independently of mianserin treatment. We also show that some ANK3/unc-44 expression is necessary for the effects of mianserin on prolonging lifespan and survival in the face of oxidative stress, particularly in younger worms. Wild-type ANK3/unc-44 increases in expression with age in C. elegans, and is maintained at lower youthful levels by mianserin treatment. These lower levels may be optimal in terms of longevity, offering a favorable balance between sufficient oxidative stress resistance in younger worms and survival effects in older worms. Thus, ANK3/unc-44 may represent an example of antagonistic pleiotropy, in which low-expression level in young animals are beneficial, but the age-associated increase becomes detrimental. Inactivating mutations in ANK3/unc-44 reverse this effect and cause detrimental effects in young animals (sensitivity to oxidative stress) and beneficial effect in old animals (increased survival). In humans, we studied if the most significant single nucleotide polymorphism (SNP) for depressive symptoms in ANK3 from our GWAS has a relationship to lifespan, and show a trend towards longer lifespan in individuals with the risk allele for depressive symptoms in men (odds ratio (OR) 1.41, P=0.031) but not in women (OR 1.08, P=0.33). We also examined whether ANK3, by itself or in a panel with other top CFG-prioritized genes, acts as a blood gene-expression biomarker for biological age, in two independent cohorts, one of live psychiatric patients (n=737), and one of suicide completers from the coroner's office (n=45). We show significantly lower levels of ANK3 expression in chronologically younger individuals than in middle age individuals, with a diminution of that effect in suicide completers, who presumably have been exposed to more severe and acute negative mood and stress. Of note, ANK3 was previously reported to be overexpressed in fibroblasts from patients with Hutchinson-Gilford progeria syndrome, a form of accelerated aging. Taken together, these studies uncover ANK3 and other genes in our dataset as biological links between mood, stress and longevity/aging, that may be biomarkers as well as targets for preventive or therapeutic interventions. Drug repurposing bioinformatics analyses identified the relatively innocuous omega-3 fatty acid DHA (docosahexaenoic acid), piracetam, quercetin, vitamin D and resveratrol as potential longevity promoting compounds, along with a series of existing drugs, such as estrogen-like compounds, antidiabetics and sirolimus/rapamycin. Intriguingly, some of our top candidate genes for mood and stress-modulated longevity were changed in expression in opposite direction in previous studies in the Alzheimer disease. Additionally, a whole series of others were changed in expression in opposite direction in our previous studies on suicide, suggesting the possibility of a "life switch" actively controlled by mood and stress.Item Next-generation precision medicine for suicidality prevention(Springer Nature, 2024-09-06) Bhagar, R.; Gill, S. S.; Le-Niculescu, H.; Yin, C.; Roseberry, K.; Mullen, J.; Schmitz, M.; Paul, E.; Cooke, J.; Tracy, C.; Tracy, Z.; Gettelfinger, A. S.; Battles, D.; Yard, M.; Sandusky, G.; Shekhar, A.; Kurian, S. M.; Bogdan, P.; Niculescu, A. B.; Psychiatry, School of MedicineSuicidality remains a clear and present danger in society in general, and for mental health patients in particular. Lack of widespread use of objective and/or quantitative information has hampered treatment and prevention efforts. Suicidality is a spectrum of severity from vague thoughts that life is not worth living, to ideation, plans, attempts, and completion. Blood biomarkers that track suicidality risk provide a window into the biology of suicidality, as well as could help with assessment and treatment. Previous studies by us were positive. Here we describe new studies we conducted transdiagnostically in psychiatric patients, starting with the whole genome, to expand the identification, prioritization, validation and testing of blood gene expression biomarkers for suicidality, using a multiple independent cohorts design. We found new as well as previously known biomarkers that were predictive of high suicidality states, and of future psychiatric hospitalizations related to them, using cross-sectional and longitudinal approaches. The overall top increased in expression biomarker was SLC6A4, the serotonin transporter. The top decreased biomarker was TINF2, a gene whose mutations result in very short telomeres. The top biological pathways were related to apoptosis. The top upstream regulator was prednisolone. Taken together, our data supports the possibility that biologically, suicidality is an extreme stress-driven form of active aging/death. Consistent with that, the top subtypes of suicidality identified by us just based on clinical measures had high stress and high anxiety. Top therapeutic matches overall were lithium, clozapine and ketamine, with lithium stronger in females and clozapine stronger in males. Drug repurposing bioinformatic analyses identified the potential of renin-angiotensin system modulators and of cyclooxygenase inhibitors. Additionally, we show how patient reports for doctors would look based on blood biomarkers testing, personalized by gender. We also integrated with the blood biomarker testing social determinants and psychological measures (CFI-S, suicidal ideation), showing synergy. Lastly, we compared that to machine learning approaches, to optimize predictive ability and identify key features. We propose that our findings and comprehensive approach can have transformative clinical utility.Item Temporal effects on death by suicide: empirical evidence and possible molecular correlates(Springer, 2023) Bhagar, R.; Le‑Niculescu, H.; Roseberry, K.; Kosary, K.; Daly, C.; Ballew, A.; Yard, M.; Sandusky, G. E.; Niculescu, A. B.; Biology, School of SciencePopular culture and medical lore have long postulated a connection between full moon and exacerbations of psychiatric disorders. We wanted to empirically analyze the hypothesis that suicides are increased during the period around full moons. We analyzed pre-COVID suicides from the Marion County Coroner’s Office (n = 776), and show that deaths by suicide are significantly increased during the week of the full moon (p = 0.037), with older individuals (age ≥ 55) showing a stronger effect (p = 0.019). We also examined in our dataset which hour of the day (3–4 pm, p = 0.035), and which month of the year (September, p = 0.09) show the most deaths by suicide. We had blood samples on a subset of the subjects (n = 45), which enabled us to look at possible molecular mechanisms. We tested a list of top blood biomarkers for suicidality (n = 154) from previous studies of ours 7, to assess which of them are predictive. The biomarkers for suicidality that are predictive of death by suicide during full moon, peak hour of day, and peak month of year, respectively, compared to outside of those periods, appear to be enriched in circadian clock genes. For full moon it is AHCYL2, ACSM3, AK2, and RBM3. For peak hour it is GSK3B, AK2, and PRKCB. For peak month it is TBL1XR1 and PRKCI. Half of these genes are modulated in expression by lithium and by valproate in opposite direction to suicidality, and all of them are modulated by depression and alcohol in the same direction as suicidality. These data suggest that there are temporal effects on suicidality, possibly mediated by biological clocks, pointing to changes in ambient light (timing and intensity) as a therapeutically addressable target to decrease suicidality, that can be coupled with psychiatric pharmacological and addiction treatment preventive interventions.Item Towards precision medicine for anxiety disorders: objective assessment, risk prediction, pharmacogenomics, and repurposed drugs(Springer Nature, 2023) Roseberry, K.; Le-Niculescu, H.; Levey, D. F.; Bhagar, R.; Soe, K.; Rogers, J.; Palkowitz, S.; Pina, N.; Anastasiadis, W. A.; Gill, S. S.; Kurian, S. M.; Shekhar, A.; Niculescu, A. B.; Psychiatry, School of MedicineAnxiety disorders are increasingly prevalent, affect people's ability to do things, and decrease quality of life. Due to lack of objective tests, they are underdiagnosed and sub-optimally treated, resulting in adverse life events and/or addictions. We endeavored to discover blood biomarkers for anxiety, using a four-step approach. First, we used a longitudinal within-subject design in individuals with psychiatric disorders to discover blood gene expression changes between self-reported low anxiety and high anxiety states. Second, we prioritized the list of candidate biomarkers with a Convergent Functional Genomics approach using other evidence in the field. Third, we validated our top biomarkers from discovery and prioritization in an independent cohort of psychiatric subjects with clinically severe anxiety. Fourth, we tested these candidate biomarkers for clinical utility, i.e. ability to predict anxiety severity state, and future clinical worsening (hospitalizations with anxiety as a contributory cause), in another independent cohort of psychiatric subjects. We showed increased accuracy of individual biomarkers with a personalized approach, by gender and diagnosis, particularly in women. The biomarkers with the best overall evidence were GAD1, NTRK3, ADRA2A, FZD10, GRK4, and SLC6A4. Finally, we identified which of our biomarkers are targets of existing drugs (such as a valproate, omega-3 fatty acids, fluoxetine, lithium, sertraline, benzodiazepines, and ketamine), and thus can be used to match patients to medications and measure response to treatment. We also used our biomarker gene expression signature to identify drugs that could be repurposed for treating anxiety, such as estradiol, pirenperone, loperamide, and disopyramide. Given the detrimental impact of untreated anxiety, the current lack of objective measures to guide treatment, and the addiction potential of existing benzodiazepines-based anxiety medications, there is a urgent need for more precise and personalized approaches like the one we developed.