- Browse by Author
Browsing by Author "Ni, Dong"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item BrcaSeg: A Deep Learning Approach for Tissue Quantification and Genomic Correlations of Histopathological Images(Elsevier, 2021) Lu, Zixiao; Zhan, Xiaohui; Wu, Yi; Cheng, Jun; Shao, Wei; Ni, Dong; Han, Zhi; Zhang, Jie; Feng, Qianjin; Huang, Kun; Medicine, School of MedicineEpithelial and stromal tissues are components of the tumor microenvironment and play a major role in tumor initiation and progression. Distinguishing stroma from epithelial tissues is critically important for spatial characterization of the tumor microenvironment. Here, we propose BrcaSeg, an image analysis pipeline based on a convolutional neural network (CNN) model to classify epithelial and stromal regions in whole-slide hematoxylin and eosin (H&E) stained histopathological images. The CNN model is trained using well-annotated breast cancer tissue microarrays and validated with images from The Cancer Genome Atlas (TCGA) Program. BrcaSeg achieves a classification accuracy of 91.02%, which outperforms other state-of-the-art methods. Using this model, we generate pixel-level epithelial/stromal tissue maps for 1000 TCGA breast cancer slide images that are paired with gene expression data. We subsequently estimate the epithelial and stromal ratios and perform correlation analysis to model the relationship between gene expression and tissue ratios. Gene Ontology (GO) enrichment analyses of genes that are highly correlated with tissue ratios suggest that the same tissue is associated with similar biological processes in different breast cancer subtypes, whereas each subtype also has its own idiosyncratic biological processes governing the development of these tissues. Taken all together, our approach can lead to new insights in exploring relationships between image-based phenotypes and their underlying genomic events and biological processes for all types of solid tumors. BrcaSeg can be accessed at https://github.com/Serian1992/ImgBio.Item Combinatorial analyses reveal cellular composition changes have different impacts on transcriptomic changes of cell type specific genes in Alzheimer’s Disease(Springer Nature, 2021-01-11) Johnson, Travis S.; Xiang, Shunian; Dong, Tianhan; Huang, Zhi; Cheng, Michael; Wang, Tianfu; Yang, Kai; Ni, Dong; Huang, Kun; Zhang, Jie; Biostatistics, School of Public HealthAlzheimer’s disease (AD) brains are characterized by progressive neuron loss and gliosis. Previous studies of gene expression using bulk tissue samples often fail to consider changes in cell-type composition when comparing AD versus control, which can lead to differences in expression levels that are not due to transcriptional regulation. We mined five large transcriptomic AD datasets for conserved gene co-expression module, then analyzed differential expression and differential co-expression within the modules between AD samples and controls. We performed cell-type deconvolution analysis to determine whether the observed differential expression was due to changes in cell-type proportions in the samples or to transcriptional regulation. Our findings were validated using four additional datasets. We discovered that the increased expression of microglia modules in the AD samples can be explained by increased microglia proportions in the AD samples. In contrast, decreased expression and perturbed co-expression within neuron modules in the AD samples was likely due in part to altered regulation of neuronal pathways. Several transcription factors that are differentially expressed in AD might account for such altered gene regulation. Similarly, changes in gene expression and co-expression within astrocyte modules could be attributed to combined effects of astrogliosis and astrocyte gene activation. Gene expression in the astrocyte modules was also strongly correlated with clinicopathological biomarkers. Through this work, we demonstrated that combinatorial analysis can delineate the origins of transcriptomic changes in bulk tissue data and shed light on key genes and pathways involved in AD.Item Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma(Nature Research, 2020) Cheng, Jun; Han, Zhi; Mehra, Rohit; Shao, Wei; Cheng, Michael; Feng, Qianjin; Ni, Dong; Huang, Kun; Cheng, Liang; Zhang, Jie; Medicine, School of MedicineTFE3 Xp11.2 translocation renal cell carcinoma (TFE3-RCC) generally progresses more aggressively compared with other RCC subtypes, but it is challenging to diagnose TFE3-RCC by traditional visual inspection of pathological images. In this study, we collect hematoxylin and eosin- stained histopathology whole-slide images of 74 TFE3-RCC cases (the largest cohort to date) and 74 clear cell RCC cases (ccRCC, the most common RCC subtype) with matched gender and tumor grade. An automatic computational pipeline is implemented to extract image features. Comparative study identifies 52 image features with significant differences between TFE3-RCC and ccRCC. Machine learning models are built to distinguish TFE3-RCC from ccRCC. Tests of the classification models on an external validation set reveal high accuracy with areas under ROC curve ranging from 0.842 to 0.894. Our results suggest that automatically derived image features can capture subtle morphological differences between TFE3-RCC and ccRCC and contribute to a potential guideline for TFE3-RCC diagnosis.Item Computational Image Analysis Identifies Histopathological Image Features Associated With Somatic Mutations and Patient Survival in Gastric Adenocarcinoma(Frontiers Media, 2021-03-31) Cheng, Jun; Liu, Yuting; Huang, Wei; Hong, Wenhui; Wang, Lingling; Zhan, Xiaohui; Han, Zhi; Ni, Dong; Huang, Kun; Zhang, Jie; Medicine, School of MedicineComputational analysis of histopathological images can identify sub-visual objective image features that may not be visually distinguishable by human eyes, and hence provides better modeling of disease phenotypes. This study aims to investigate whether specific image features are associated with somatic mutations and patient survival in gastric adenocarcinoma (sample size = 310). An automated image analysis pipeline was developed to extract quantitative morphological features from H&E stained whole-slide images. We found that four frequently somatically mutated genes (TP53, ARID1A, OBSCN, and PIK3CA) were significantly associated with tumor morphological changes. A prognostic model built on the image features significantly stratified patients into low-risk and high-risk groups (log-rank test p-value = 2.6e-4). Multivariable Cox regression showed the model predicted risk index was an additional prognostic factor besides tumor grade and stage. Gene ontology enrichment analysis showed that the genes whose expressions mostly correlated with the contributing features in the prognostic model were enriched on biological processes such as cell cycle and muscle contraction. These results demonstrate that histopathological image features can reflect underlying somatic mutations and identify high-risk patients that may benefit from more precise treatment regimens. Both the image features and pipeline are highly interpretable to enable translational applications.Item Condition-specific gene co-expression network mining identifies key pathways and regulators in the brain tissue of Alzheimer's disease patients(Biomed Central, 2018-12-31) Xiang, Shunian; Huang, Zhi; Wang, Tianfu; Han, Zhi; Yu, Christina Y.; Ni, Dong; Huang, Kun; Zhang, Jie; Medicine, School of MedicineBACKGROUND: Gene co-expression network (GCN) mining is a systematic approach to efficiently identify novel disease pathways, predict novel gene functions and search for potential disease biomarkers. However, few studies have systematically identified GCNs in multiple brain transcriptomic data of Alzheimer's disease (AD) patients and looked for their specific functions. METHODS: In this study, we first mined GCN modules from AD and normal brain samples in multiple datasets respectively; then identified gene modules that are specific to AD or normal samples; lastly, condition-specific modules with similar functional enrichments were merged and enriched differentially expressed upstream transcription factors were further examined for the AD/normal-specific modules. RESULTS: We obtained 30 AD-specific modules which showed gain of correlation in AD samples and 31 normal-specific modules with loss of correlation in AD samples compared to normal ones, using the network mining tool lmQCM. Functional and pathway enrichment analysis not only confirmed known gene functional categories related to AD, but also identified novel regulatory factors and pathways. Remarkably, pathway analysis suggested that a variety of viral, bacteria, and parasitic infection pathways are activated in AD samples. Furthermore, upstream transcription factor analysis identified differentially expressed upstream regulators such as ZFHX3 for several modules, which can be potential driver genes for AD etiology and pathology. CONCLUSIONS: Through our state-of-the-art network-based approach, AD/normal-specific GCN modules were identified using multiple transcriptomic datasets from multiple regions of the brain. Bacterial and viral infectious disease related pathways are the most frequently enriched in modules across datasets. Transcription factor ZFHX3 was identified as a potential driver regulator targeting the infectious diseases pathways in AD-specific modules. Our results provided new direction to the mechanism of AD as well as new candidates for drug targets.Item Correlation Analysis of Histopathology and Proteogenomics Data for Breast Cancer(American Society for Biochemistry and Molecular Biology, 2019-08-09) Zhan, Xiaohui; Cheng, Jun; Huang, Zhi; Han, Zhi; Helm, Bryan; Liu, Xiaowen; Zhang, Jie; Wang, Tian-Fu; Ni, Dong; Huang, Kun; Medicine, School of MedicineTumors are heterogeneous tissues with different types of cells such as cancer cells, fibroblasts, and lymphocytes. Although the morphological features of tumors are critical for cancer diagnosis and prognosis, the underlying molecular events and genes for tumor morphology are far from being clear. With the advancement in computational pathology and accumulation of large amount of cancer samples with matched molecular and histopathology data, researchers can carry out integrative analysis to investigate this issue. In this study, we systematically examine the relationships between morphological features and various molecular data in breast cancers. Specifically, we identified 73 breast cancer patients from the TCGA and CPTAC projects matched whole slide images, RNA-seq, and proteomic data. By calculating 100 different morphological features and correlating them with the transcriptomic and proteomic data, we inferred four major biological processes associated with various interpretable morphological features. These processes include metabolism, cell cycle, immune response, and extracellular matrix development, which are all hallmarks of cancers and the associated morphological features are related to area, density, and shapes of epithelial cells, fibroblasts, and lymphocytes. In addition, protein specific biological processes were inferred solely from proteomic data, suggesting the importance of proteomic data in obtaining a holistic understanding of the molecular basis for tumor tissue morphology. Furthermore, survival analysis yielded specific morphological features related to patient prognosis, which have a strong association with important molecular events based on our analysis. Overall, our study demonstrated the power for integrating multiple types of biological data for cancer samples in generating new hypothesis as well as identifying potential biomarkers predicting patient outcome. Future work includes causal analysis to identify key regulators for cancer tissue development and validating the findings using more independent data sets.Item Differentiation between immune checkpoint inhibitor‐related and radiation pneumonitis in lung cancer by CT radiomics and machine learning(Wiley, 2022) Cheng, Jun; Pan, Yi; Huang, Wei; Huang, Kun; Cui, Yanhai; Cui, Yanhai; Hong, Wenhui; Wang, Lingling; Ni, Dong; Tan, Peixin; Biostatistics, School of Public HealthPurpose Consolidation immunotherapy after completion of chemoradiotherapy has become the standard of care for unresectable locally advanced non-small cell lung cancer and can induce potentially severe and life-threatening adverse events, including both immune checkpoint inhibitor-related pneumonitis (CIP) and radiation pneumonitis (RP), which are very challenging for radiologists to diagnose. Differentiating between CIP and RP has significant implications for clinical management such as the treatments to pneumonitis and the decision to continue or restart immunotherapy. The purpose of this study is to differentiate between CIP and RP by a CT radiomics approach. Methods We retrospectively collected the CT images and clinical information of patients with pneumonitis who received immune checkpoint inhibitor (ICI) only (n = 28), radiotherapy (RT) only (n = 31), and ICI+RT (n = 14). Three kinds of radiomic features (intensity histogram, gray-level co-occurrence matrix (GLCM) based, and bag-of-words features) were extracted from CT images, which characterize tissue texture at different scales. Classification models, including logistic regression, random forest, and linear SVM, were first developed and tested in patients who received ICI or RT only with 10-fold cross validation and further tested in patients who received ICI+RT using clinicians’ diagnosis as a reference. Results Using 10-fold cross validation, the classification models built on the intensity histogram features, GLCM based features, and bag-of-words features achieved an area under curve (AUC) of 0.765, 0.848, and 0.937, respectively. The best model was then applied to the patients receiving combination treatment, achieving an AUC of 0.896. Conclusions This study demonstrates the promising potential of radiomic analysis of CT images for differentiating between CIP and RP in lung cancer, which could be a useful tool to attribute the cause of pneumonitis in patients who receive both ICI and RT.Item Gene Co-Expression Networks Restructured Gene Fusion in Rhabdomyosarcoma Cancers(MDPI, 2019-08-30) Helm, Bryan R.; Zhan, Xiaohui; Pandya, Pankita H.; Murray, Mary E.; Pollok, Karen E.; Renbarger, Jamie L.; Ferguson, Michael J.; Han, Zhi; Ni, Dong; Zhang, Jie; Huang, Kun; Medicine, School of MedicineRhabdomyosarcoma is subclassified by the presence or absence of a recurrent chromosome translocation that fuses the FOXO1 and PAX3 or PAX7 genes. The fusion protein (FOXO1-PAX3/7) retains both binding domains and becomes a novel and potent transcriptional regulator in rhabdomyosarcoma subtypes. Many studies have characterized and integrated genomic, transcriptomic, and epigenomic differences among rhabdomyosarcoma subtypes that contain the FOXO1-PAX3/7 gene fusion and those that do not; however, few investigations have investigated how gene co-expression networks are altered by FOXO1-PAX3/7. Although transcriptional data offer insight into one level of functional regulation, gene co-expression networks have the potential to identify biological interactions and pathways that underpin oncogenesis and tumorigenicity. Thus, we examined gene co-expression networks for rhabdomyosarcoma that were FOXO1-PAX3 positive, FOXO1-PAX7 positive, or fusion negative. Gene co-expression networks were mined using local maximum Quasi-Clique Merger (lmQCM) and analyzed for co-expression differences among rhabdomyosarcoma subtypes. This analysis observed 41 co-expression modules that were shared between fusion negative and positive samples, of which 17/41 showed significant up- or down-regulation in respect to fusion status. Fusion positive and negative rhabdomyosarcoma showed differing modularity of co-expression networks with fusion negative (n = 109) having significantly more individual modules than fusion positive (n = 53). Subsequent analysis of gene co-expression networks for PAX3 and PAX7 type fusions observed 17/53 were differentially expressed between the two subtypes. Gene list enrichment analysis found that gene ontology terms were poorly matched with biological processes and molecular function for most co-expression modules identified in this study; however, co-expressed modules were frequently localized to cytobands on chromosomes 8 and 11. Overall, we observed substantial restructuring of co-expression networks relative to fusion status and fusion type in rhabdomyosarcoma and identified previously overlooked genes and pathways that may be targeted in this pernicious disease.Item Multimodal data analysis reveals that pancreatobiliary-type ampullary adenocarcinoma resembles pancreatic adenocarcinoma and differs from cholangiocarcinoma(BMC, 2022-06-15) Cheng, Jun; Mao, Yize; Hong, Wenhui; Hu, Wanming; Shu, Peng; Huang, Kun; Yu, Jingjing; Jiang, Maofen; Li, Liqin; Wang, Wei; Ni, Dong; Li, Shengping; Biostatistics and Health Data Science, School of MedicineBackground: Ampullary adenocarcinoma (AAC) arises from the ampulla of Vater where the pancreatic duct and bile duct join and empty into the duodenum. It can be classified into intestinal and pancreatobiliary types based on histopathology or immunohistochemistry. However, there are no biomarkers for further classification of pancreatobiliary-type AAC which has important implications for its treatment. We aimed to identify the tumor origin of pancreatobiliary-type AAC by systematically analyzing whole-slide images (WSIs), survival data, and genome sequencing data collected from multiple centers. Methods: This study involved three experiments. First, we extracted quantitative and highly interpretable features from the tumor region in WSIs and constructed a histologic classifier to differentiate between pancreatic adenocarcinoma (PAC) and cholangiocarcinoma. The histologic classifier was then applied to patients with pancreatobiliary-type AAC to infer the tumor origin. Secondly, we compared the overall survival of patients with pancreatobiliary-type AAC stratified by the adjuvant chemotherapy regimens designed for PAC or cholangiocarcinoma. Finally, we compared the mutation landscape of pancreatobiliary-type AAC with those of PAC and cholangiocarcinoma. Results: The histologic classifier accurately classified PAC and cholangiocarcinoma in both the internal and external validation sets (AUC > 0.99). All pancreatobiliary-type AACs (n = 45) were classified as PAC. The patients with pancreatobiliary-type AAC receiving regimens designed for PAC showed more favorable overall survival than those receiving regimens designed for cholangiocarcinoma in a multivariable Cox regression (hazard ratio = 7.24, 95% confidence interval: 1.28-40.78, P = 0.025). The results of mutation analysis showed that the mutation landscape of AAC was very similar to that of PAC but distinct from that of cholangiocarcinoma. Conclusions: This multi-center study provides compelling evidence that pancreatobiliary-type AAC resembles PAC instead of cholangiocarcinoma in different aspects, which can guide the treatment selection and clinical trials planning for pancreatobiliary-type AAC.Item A pan-kidney cancer study identifies subtype specific perturbations on pathways with potential drivers in renal cell carcinoma(BMC, 2020-12-28) Zhan, Xiaohui; Liu, Yusong; Yu, Christina Y.; Wang, Tian‑Fu; Zhang, Jie; Ni, Dong; Huang, Kun; Medicine, School of MedicineBackground: Renal cell carcinoma (RCC) is a complex disease and is comprised of several histological subtypes, the most frequent of which are clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (PRCC) and chromophobe renal cell carcinoma (ChRCC). While lots of studies have been performed to investigate the molecular characterizations of different subtypes of RCC, our knowledge regarding the underlying mechanisms are still incomplete. As molecular alterations are eventually reflected on the pathway level to execute certain biological functions, characterizing the pathway perturbations is crucial for understanding tumorigenesis and development of RCC. Methods: In this study, we investigated the pathway perturbations of various RCC subtype against normal tissue based on differential expressed genes within a certain pathway. We explored the potential upstream regulators of subtype-specific pathways with Ingenuity Pathway Analysis (IPA). We also evaluated the relationships between subtype-specific pathways and clinical outcome with survival analysis. Results: In this study, we carried out a pathway-based analysis to explore the mechanisms of various RCC subtypes with TCGA RNA-seq data. Both commonly altered pathways and subtype-specific pathways were detected. To identify the distinctive characteristics of each subtype, we focused on subtype-specific perturbed pathways. Specifically, we observed that some of the altered pathways were regulated by several recurrent upstream regulators which presenting different expression patterns among distinct RCC subtypes. We also noticed that a large number of perturbed pathways were controlled by the subtype-specific upstream regulators. Moreover, we also evaluated the relationships between perturbed pathways and clinical outcome. Prognostic pathways were identified and their roles in tumor development and progression were inferred. Conclusions: In summary, we evaluated the relationships among pathway perturbations, upstream regulators and clinical outcome for differential subtypes in RCC. We hypothesized that the alterations of common upstream regulators as well as subtype-specific upstream regulators work together to affect the downstream pathway perturbations and drive cancer initialization and prognosis. Our findings not only increase our understanding of the mechanisms of various RCC subtypes, but also provide targets for personalized therapeutic intervention.