- Browse by Author
Browsing by Author "Neela, Sunil"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Human Activity Recognition using Deep Learning Models on Smartphones and Smartwatches Sensor Data(BIOSTEC, 2021) Oluwalade, Bolu; Neela, Sunil; Wawira, Judy; Adejumo, Tobiloba; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingIn recent years, human activity recognition has garnered considerable attention both in industrial and academic research because of the wide deployment of sensors, such as accelerometers and gyroscopes, in products such as smartphones and smartwatches. Activity recognition is currently applied in various fields where valuable information about an individual’s functional ability and lifestyle is needed. In this study, we used the popular WISDM dataset for activity recognition. Using multivariate analysis of covariance (MANCOVA), we established a statistically significant difference (p < 0.05) between the data generated from the sensors embedded in smartphones and smartwatches. By doing this, we show that smartphones and smartwatches don’t capture data in the same way due to the location where they are worn. We deployed several neural network architectures to classify 15 different hand and non-hand oriented activities. These models include Long short-term memory (LSTM), Bi-directional Long short-term memory (BiLSTM), Convolutional Neural Network (CNN), and Convolutional LSTM (ConvLSTM). The developed models performed best with watch accelerometer data. Also, we saw that the classification precision obtained with the convolutional input classifiers (CNN and ConvLSTM) was higher than the end-to-end LSTM classifier in 12 of the 15 activities. Additionally, the CNN model for the watch accelerometer was better able to classify non-hand oriented activities when compared to hand-oriented activities.Item Human Activity Recognition using Deep Learning Models on Smartphones and Smartwatches Sensor Data(Scitepress, 2021) Oluwalade, Bolu; Neela, Sunil; Wawira, Judy; Adejumo, Tobiloba; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingIn recent years, human activity recognition has garnered considerable attention both in industrial and academic research because of the wide deployment of sensors, such as accelerometers and gyroscopes, in products such as smartphones and smartwatches. Activity recognition is currently applied in various fields where valuable information about an individual’s functional ability and lifestyle is needed. In this study, we used the popular WISDM dataset for activity recognition. Using multivariate analysis of covariance (MANCOVA), we established a statistically significant difference (p < 0.05) between the data generated from the sensors embedded in smartphones and smartwatches. By doing this, we show that smartphones and smartwatches don’t capture data in the same way due to the location where they are worn. We deployed several neural network architectures to classify 15 different hand and non-hand oriented activities. These models include Long short-term memory (LSTM), Bi-directional Long short-term memory (BiLSTM), Convolutional Neural Network (CNN), and Convolutional LSTM (ConvLSTM). The developed models performed best with watch accelerometer data. Also, we saw that the classification precision obtained with the convolutional input classifiers (CNN and ConvLSTM) was higher than the end-to-end LSTM classifier in 12 of the 15 activities. Additionally, the CNN model for the watch accelerometer was better able to classify non-hand oriented activities when compared to hand-oriented activities.Item Natural language processing of MIMIC-III clinical notes for identifying diagnosis and procedures with neural networks(arXiv, 2019) Nuthakki, Siddhartha; Neela, Sunil; Gichoya, Judy W.; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingCoding diagnosis and procedures in medical records is a crucial process in the healthcare industry, which includes the creation of accurate billings, receiving reimbursements from payers, and creating standardized patient care records. In the United States, Billing and Insurance related activities cost around $471 billion in 2012 which constitutes about 25% of all the U.S hospital spending. In this paper, we report the performance of a natural language processing model that can map clinical notes to medical codes, and predict final diagnosis from unstructured entries of history of present illness, symptoms at the time of admission, etc. Previous studies have demonstrated that deep learning models perform better at such mapping when compared to conventional machine learning models. Therefore, we employed state-of-the-art deep learning method, ULMFiT on the largest emergency department clinical notes dataset MIMIC III which has 1.2M clinical notes to select for the top-10 and top-50 diagnosis and procedure codes. Our models were able to predict the top-10 diagnoses and procedures with 80.3% and 80.5% accuracy, whereas the top-50 ICD-9 codes of diagnosis and procedures are predicted with 70.7% and 63.9% accuracy. Prediction of diagnosis and procedures from unstructured clinical notes benefit human coders to save time, eliminate errors and minimize costs. With promising scores from our present model, the next step would be to deploy this on a small-scale real-world scenario and compare it with human coders as the gold standard. We believe that further research of this approach can create highly accurate predictions that can ease the workflow in a clinical setting.