ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Namazii, Ruth"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Gut Bacteroides act in a microbial consortium to cause susceptibility to severe malaria
    (Springer, 2023-10-13) Mandal, Rabindra K.; Mandal, Anita; Denny, Joshua E.; Namazii, Ruth; John, Chandy C.; Schmidt, Nathan W.; Pediatrics, School of Medicine
    Malaria is caused by Plasmodium species and remains a significant cause of morbidity and mortality globally. Gut bacteria can influence the severity of malaria, but the contribution of specific bacteria to the risk of severe malaria is unknown. Here, multiomics approaches demonstrate that specific species of Bacteroides are causally linked to the risk of severe malaria. Plasmodium yoelii hyperparasitemia-resistant mice gavaged with murine-isolated Bacteroides fragilis develop P. yoelii hyperparasitemia. Moreover, Bacteroides are significantly more abundant in Ugandan children with severe malarial anemia than with asymptomatic P. falciparum infection. Human isolates of Bacteroides caccae, Bacteroides uniformis, and Bacteroides ovatus were able to cause susceptibility to severe malaria in mice. While monocolonization of germ-free mice with Bacteroides alone is insufficient to cause susceptibility to hyperparasitemia, meta-analysis across multiple studies support a main role for Bacteroides in susceptibility to severe malaria. Approaches that target gut Bacteroides present an opportunity to prevent severe malaria and associated deaths.
  • Loading...
    Thumbnail Image
    Item
    Gut Bacteroides act in a microbial consortium to cause susceptibility to severe malaria
    (Springer Nature, 2023-10-13) Mandal, Rabindra K.; Mandal, Anita; Denny, Joshua E.; Namazii, Ruth; John, Chandy C.; Schmidt, Nathan W.; Pediatrics, School of Medicine
    Malaria is caused by Plasmodium species and remains a significant cause of morbidity and mortality globally. Gut bacteria can influence the severity of malaria, but the contribution of specific bacteria to the risk of severe malaria is unknown. Here, multiomics approaches demonstrate that specific species of Bacteroides are causally linked to the risk of severe malaria. Plasmodium yoelii hyperparasitemia-resistant mice gavaged with murine-isolated Bacteroides fragilis develop P. yoelii hyperparasitemia. Moreover, Bacteroides are significantly more abundant in Ugandan children with severe malarial anemia than with asymptomatic P. falciparum infection. Human isolates of Bacteroides caccae, Bacteroides uniformis, and Bacteroides ovatus were able to cause susceptibility to severe malaria in mice. While monocolonization of germ-free mice with Bacteroides alone is insufficient to cause susceptibility to hyperparasitemia, meta-analysis across multiple studies support a main role for Bacteroides in susceptibility to severe malaria. Approaches that target gut Bacteroides present an opportunity to prevent severe malaria and associated deaths.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University