- Browse by Author
Browsing by Author "Nakamura, Akinori"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Blood-based biomarkers for Alzheimer's disease: Current state and future use in a transformed global healthcare landscape(Elsevier, 2023) Hampel, Harald; Hu, Yan; Cummings, Jeffrey; Mattke, Soeren; Iwatsubo, Takeshi; Nakamura, Akinori; Vellas, Bruno; O’Bryant, Sid; Shaw, Leslie M.; Cho, Min; Batrla, Richard; Vergallo, Andrea; Blennow, Kaj; Dage, Jeffrey; Schindler, Suzanne E.; Neurology, School of MedicineTimely detection of the pathophysiological changes and cognitive impairment caused by Alzheimer's disease (AD) is increasingly pressing because of the advent of biomarker-guided targeted therapies that may be most effective when provided early in the disease. Currently, diagnosis and management of early AD are largely guided by clinical symptoms. FDA-approved neuroimaging and cerebrospinal fluid biomarkers can aid detection and diagnosis, but the clinical implementation of these testing modalities is limited because of availability, cost, and perceived invasiveness. Blood-based biomarkers (BBBMs) may enable earlier and faster diagnoses as well as aid in risk assessment, early detection, prognosis, and management. Herein, we review data on BBBMs that are closest to clinical implementation, particularly those based on measures of amyloid-β peptides and phosphorylated tau species. We discuss key parameters and considerations for the development and potential deployment of these BBBMs under different contexts of use and highlight challenges at the methodological, clinical, and regulatory levels.Item The global Alzheimer's Association round robin study on plasma amyloid β methods(Wiley, 2021-10-14) Pannee, Josef; Shaw, Leslie M.; Korecka, Magdalena; Waligorska, Teresa; Teunissen, Charlotte E.; Stoops, Erik; Vanderstichele, Hugo M. J.; Mauroo, Kimberley; Verberk, Inge M. W.; Keshavan, Ashvini; Pesini, Pedro; Sarasa, Leticia; Pascual-Lucas, Maria; Fandos, Noelia; Allué, José-Antonio; Portelius, Erik; Andreasson, Ulf; Yoda, Ritsuko; Nakamura, Akinori; Kaneko, Naoki; Yang, Shieh-Yueh; Liu, Huei-Chun; Palme, Stefan; Bittner, Tobias; Mawuenyega, Kwasi G.; Ovod, Vitaliy; Bollinger, James; Bateman, Randall J.; Li, Yan; Dage, Jeffrey L.; Stomrud, Erik; Hansson, Oskar; Schott, Jonathan M.; Blennow, Kaj; Zetterberg, Henrik; Neurology, School of MedicineIntroduction: Blood-based assays to measure brain amyloid beta (Aβ) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure Aβ and how they compare among centers and assays. Methods: Aliquots from 81 plasma samples were distributed to 10 participating centers. Seven immunological assays and four mass-spectrometric methods were used to measure plasma Aβ concentrations. Results: Correlations were weak for Aβ42 while Aβ40 correlations were stronger. The ratio Aβ42/Aβ40 did not improve the correlations and showed weak correlations. Discussion: The poor correlations for Aβ42 in plasma might have several potential explanations, such as the high levels of plasma proteins (compared to CSF), sensitivity to pre-analytical sample handling and specificity, and cross-reactivity of different antibodies. Different methods might also measure different pools of plasma Aβ42. We, however, hypothesize that greater correlations might be seen in future studies because many of the methods have been refined during completion of this study.