- Browse by Author
Browsing by Author "Naha, Pratap C."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity(Springer Nature, 2018-07-31) Liu, Yuan; Naha, Pratap C.; Hwang, Geelsu; Kim, Dongyeop; Huang, Yue; Simon-Soro, Aurea; Jung, Hoi-In; Ren, Zhi; Li, Yong; Gubara, Sarah; Alawi, Faizan; Zero, Domenick; Hara, Anderson T.; Cormode, David P.; Cariology, Operative Dentistry and Dental Public Health, School of DentistryFerumoxytol is a nanoparticle formulation approved by the U.S. Food and Drug Administration for systemic use to treat iron deficiency. Here, we show that, in addition, ferumoxytol disrupts intractable oral biofilms and prevents tooth decay (dental caries) via intrinsic peroxidase-like activity. Ferumoxytol binds within the biofilm ultrastructure and generates free radicals from hydrogen peroxide (H2O2), causing in situ bacterial death via cell membrane disruption and extracellular polymeric substances matrix degradation. In combination with low concentrations of H2O2, ferumoxytol inhibits biofilm accumulation on natural teeth in a human-derived ex vivo biofilm model, and prevents acid damage of the mineralized tissue. Topical oral treatment with ferumoxytol and H2O2 suppresses the development of dental caries in vivo, preventing the onset of severe tooth decay (cavities) in a rodent model of the disease. Microbiome and histological analyses show no adverse effects on oral microbiota diversity, and gingival and mucosal tissues. Our results reveal a new biomedical application for ferumoxytol as topical treatment of a prevalent and costly biofilm-induced oral disease.