ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nagy, Laura E."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers
    (Elsevier, 2022) Whitfield, John B.; Schwantes-An, Tae-Hwi; Darlay, Rebecca; Aithal, Guruprasad P.; Atkinson, Stephen R.; Bataller, Ramon; Botwin, Greg; Chalasani, Naga P.; Cordell, Heather J.; Daly, Ann K.; Day, Christopher P.; Eyer, Florian; Foroud, Tatiana; Gleeson, Dermot; Goldman, David; Haber, Paul S.; Jacquet, Jean-Marc; Liang, Tiebing; Liangpunsakul, Suthat; Masson, Steven; Mathurin, Philippe; Moirand, Romain; McQuillin, Andrew; Moreno, Christophe; Morgan, Marsha Y.; Mueller, Sebastian; Müllhaupt, Beat; Nagy, Laura E.; Nahon, Pierre; Nalpas, Bertrand; Naveau, Sylvie; Perney, Pascal; Pirmohamed, Munir; Seitz, Helmut K.; Soyka, Michael; Stickel, Felix; Thompson, Andrew; Thursz, Mark R.; Trépo, Eric; Morgan, Timothy R.; Seth, Devanshi; GenomALC Consortium; Medical and Molecular Genetics, School of Medicine
    Background & aims: Only a minority of excess alcohol drinkers develop cirrhosis. We developed and evaluated risk stratification scores to identify those at highest risk. Methods: Three cohorts (GenomALC-1: n = 1,690, GenomALC-2: n = 3,037, UK Biobank: relevant n = 6,898) with a history of heavy alcohol consumption (≥80 g/day (men), ≥50 g/day (women), for ≥10 years) were included. Cases were participants with alcohol-related cirrhosis. Controls had a history of similar alcohol consumption but no evidence of liver disease. Risk scores were computed from up to 8 genetic loci identified previously as associated with alcohol-related cirrhosis and 3 clinical risk factors. Score performance for the stratification of alcohol-related cirrhosis risk was assessed and compared across the alcohol-related liver disease spectrum, including hepatocellular carcinoma (HCC). Results: A combination of 3 single nucleotide polymorphisms (SNPs) (PNPLA3:rs738409, SUGP1-TM6SF2:rs10401969, HSD17B13:rs6834314) and diabetes status best discriminated cirrhosis risk. The odds ratios (ORs) and (95% CIs) between the lowest (Q1) and highest (Q5) score quintiles of the 3-SNP score, based on independent allelic effect size estimates, were 5.99 (4.18-8.60) (GenomALC-1), 2.81 (2.03-3.89) (GenomALC-2), and 3.10 (2.32-4.14) (UK Biobank). Patients with diabetes and high risk scores had ORs of 14.7 (7.69-28.1) (GenomALC-1) and 17.1 (11.3-25.7) (UK Biobank) compared to those without diabetes and with low risk scores. Patients with cirrhosis and HCC had significantly higher mean risk scores than patients with cirrhosis alone (0.76 ± 0.06 vs. 0.61 ± 0.02, p = 0.007). Score performance was not significantly enhanced by information on additional genetic risk variants, body mass index or coffee consumption. Conclusions: A risk score based on 3 genetic risk variants and diabetes status enables the stratification of heavy drinkers based on their risk of cirrhosis, allowing for the provision of earlier preventative interventions. Lay summary: Excessive chronic drinking leads to cirrhosis in some people, but so far there is no way to identify those at high risk of developing this debilitating disease. We developed a genetic risk score that can identify patients at high risk. The risk of cirrhosis is increased >10-fold with just two risk factors - diabetes and a high genetic risk score. Risk assessment using this test could enable the early and personalised management of this disease in high-risk patients.
  • Loading...
    Thumbnail Image
    Item
    A polygenic risk score for alcohol-associated cirrhosis among heavy drinkers with European ancestry
    (Wolters Kluwer, 2024-05-10) Schwantes-An, Tae-Hwi; Whitfield, John B.; Aithal, Guruprasad P.; Atkinson, Stephen R.; Bataller, Ramon; Botwin, Greg; Chalasani, Naga P.; Cordell, Heather J.; Daly, Ann K.; Darlay, Rebecca; Day, Christopher P.; Eyer, Florian; Foroud, Tatiana; Gawrieh, Samer; Gleeson, Dermot; Goldman, David; Haber, Paul S.; Jacquet, Jean-Marc; Lammert, Craig S.; Liang, Tiebing; Liangpunsakul, Suthat; Masson, Steven; Mathurin, Philippe; Moirand, Romain; McQuillin, Andrew; Moreno, Christophe; Morgan, Marsha Y.; Mueller, Sebastian; Müllhaupt, Beat; Nagy, Laura E.; Nahon, Pierre; Nalpas, Bertrand; Naveau, Sylvie; Perney, Pascal; Pirmohamed, Munir; Seitz, Helmut K.; Soyka, Michael; Stickel, Felix; Thompson, Andrew; Thursz, Mark R.; Trépo, Eric; Morgan, Timothy R.; Seth, Devanshi; GenomALC Consortium; Medical and Molecular Genetics, School of Medicine
    Background: Polygenic Risk Scores (PRS) based on results from genome-wide association studies offer the prospect of risk stratification for many common and complex diseases. We developed a PRS for alcohol-associated cirrhosis by comparing single-nucleotide polymorphisms among patients with alcohol-associated cirrhosis (ALC) versus drinkers who did not have evidence of liver fibrosis/cirrhosis. Methods: Using a data-driven approach, a PRS for ALC was generated using a meta-genome-wide association study of ALC (N=4305) and an independent cohort of heavy drinkers with ALC and without significant liver disease (N=3037). It was validated in 2 additional independent cohorts from the UK Biobank with diagnosed ALC (N=467) and high-risk drinking controls (N=8981) and participants in the Indiana Biobank Liver cohort with alcohol-associated liver disease (N=121) and controls without liver disease (N=3239). Results: A 20-single-nucleotide polymorphisms PRS for ALC (PRSALC) was generated that stratified risk for ALC comparing the top and bottom deciles of PRS in the 2 validation cohorts (ORs: 2.83 [95% CI: 1.82 -4.39] in UK Biobank; 4.40 [1.56 -12.44] in Indiana Biobank Liver cohort). Furthermore, PRSALC improved the prediction of ALC risk when added to the models of clinically known predictors of ALC risk. It also stratified the risk for metabolic dysfunction -associated steatotic liver disease -cirrhosis (3.94 [2.23 -6.95]) in the Indiana Biobank Liver cohort -based exploratory analysis. Conclusions: PRSALC incorporates 20 single-nucleotide polymorphisms, predicts increased risk for ALC, and improves risk stratification for ALC compared with the models that only include clinical risk factors. This new score has the potential for early detection of heavy drinking patients who are at high risk for ALC.
  • Loading...
    Thumbnail Image
    Item
    Exome-wide association analysis identifies novel risk loci for alcohol-associated hepatitis
    (Wolters Kluwer, 2025) Yuan, Qiaoping; Hodgkinson, Colin; Liu, Xiaochen; Barton, Bruce; Diazgranados, Nancy; Schwandt, Melanie; Morgan, Timothy; Bataller, Ramon; Liangpunsakul, Suthat; Nagy, Laura E.; Goldman, David; Medicine, School of Medicine
    Background and aims: Alcohol-associated hepatitis (AH) is a clinically severe, acute disease that afflicts only a fraction of patients with alcohol use disorder. Genomic studies of alcohol-associated cirrhosis (AC) have identified several genes of large effect, but the genetic and environmental factors that lead to AH and AC, and their degree of genetic overlap, remain largely unknown. This study aims to identify genes and genetic variations that contribute to the development of AH. Approach and results: Exome-sequencing of patients with AH (N=784) and heavy drinking controls (N=951) identified an exome-wide significant association for AH at patalin-like phospholipase domain containing 3, as previously observed for AC in genome-wide association study, although with a much lower effect size. Single nucleotide polymorphisms (SNPs) of large effect size at inducible T cell costimulatory ligand ( ICOSLG ) (Chr 21) and TOX4/RAB2B (Chr 14) were also exome-wide significant. ICOSLG encodes a co-stimulatory signal for T-cell proliferation and cytokine secretion and induces B-cell proliferation and differentiation. TOX high mobility group box family member 4 ( TOX4 ) was previously implicated in diabetes and immune system function. Other genes previously implicated in AC did not strongly contribute to AH, and the only prominently implicated (but not exome-wide significant) gene overlapping with alcohol use disorder was alcohol dehydrogenase 1B ( ADH1B ). Polygenic signals for AH were observed in both common and rare variant analysis and identified genes with roles associated with inflammation. Conclusions: This study has identified 2 new genes of high effect size with a previously unknown contribution to alcohol-associated liver disease and highlights both the overlap in etiology between liver diseases and the unique origins of AH.
  • Loading...
    Thumbnail Image
    Item
    Non-coding RNA crosstalk with nuclear receptors in liver disease
    (Elsevier, 2021-05) Wu, Jianguo; Nagy, Laura E.; Liangpunsakul, Suthat; Wang, Li; Medicine, School of Medicine
    The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University