- Browse by Author
Browsing by Author "Naguib, Fardos N. M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Insertional tagging of at least two loci associated with resistance to adenine arabinoside in Toxoplasma gondii, and cloning of the adenosine kinase locus(Elsevier, 1999) Sullivan, William J., Jr.; Chiang, Chi-Wu; Wilson, Craig M.; Naguib, Fardos N. M.; el Kouni, Mahmoud H.; Donald, Robert G. K.; Roos, David S.A genetic approach has been exploited to investigate adenylate salvage pathways in the protozoan parasite Toxoplasma gondii, a purine auxotroph. Using a new insertional mutagenesis vector designed to facilitate the rescue of tagged loci even when multiple plasmids integrate as a tandem array, 15 independent clonal lines resistant to the toxic nucleoside analog adenine arabinoside (AraA) were generated. Approximately two-thirds of these clones lack adenosine kinase (AK) activity. Parallel studies identified an expressed sequence tag (EST) exhibiting a small region of weak similarity to human AK, and this locus was tagged in several AK-deficient insertional mutants. Library screening yielded full-length cDNA and genomic clones. The T. gondii AK gene contains five exons spanning a approximately 3 kb locus, and the predicted coding sequence was employed to identify additional AK genes and cDNAs in the GenBank and dbEST databases. A genomic construct lacking essential coding sequence was used to create defined genetic knock-outs at the T. gondii AK locus, and AK activity was restored using a cDNA-derived minigene. Hybridization analysis of DNA from 13 AraA-resistant insertional mutants reveals three distinct classes: (i) AK-mutants tagged at the AK locus; (ii) AK- mutants not tagged at the AK locus, suggesting the possibility that another locus may be involved in regulating AK expression; and (iii) mutants with normal AK activity (potential transport mutants).Item The adenosine transporter of Toxoplasma gondii: Identification by insertional mutagenesis, cloning, and recombinant expression(Elsevier, 1999) Chiang, Chi-Wu; Carter, Nicola; Sullivan, William J., Jr.; Donald, Robert G. K.; Roos, David S.; Naguib, Fardos N. M.; el Kouni, Mahmoud H.; Ullman, Buddy; Wilson, Craig M.Purine transport into the protozoan parasite Toxoplasma gondii plays an indispensable nutritional function for this pathogen. To facilitate genetic and biochemical characterization of the adenosine transporter of the parasite, T. gondii tachyzoites were transfected with an insertional mutagenesis vector, and clonal mutants were selected for resistance to the cytotoxic adenosine analog adenine arabinoside (Ara-A). Whereas some Ara-A-resistant clones exhibited disruption of the adenosine kinase (AK) locus, others displayed normal AK activity, suggesting that a second locus had been tagged by the insertional mutagenesis plasmid. These Ara-A(r) AK+ mutants displayed reduced adenosine uptake capability, implying a defect in adenosine transport. Sequences flanking the transgene integration point in one mutant were rescued from a genomic library of Ara-A(r) AK+ DNA, and Southern blot analysis revealed that all Ara-A(r) AK+ mutants were disrupted at the same locus. Probes derived from this locus, designated TgAT, were employed to isolate genomic and cDNA clones from wild-type libraries. Conceptual translation of the TgAT cDNA open reading frame predicts a 462 amino acid protein containing 11 transmembrane domains, a primary structure and membrane topology similar to members of the mammalian equilibrative nucleoside transporter family. Expression of TgAT cRNA in Xenopus laevis oocytes increased adenosine uptake capacity in a saturable manner, with an apparent K(m) value of 114 microM. Uptake was inhibited by various nucleosides, nucleoside analogs, hypoxanthine, guanine, and dipyridamole. The combination of genetic and biochemical studies demonstrates that TgAT is the sole functional adenosine transporter in T. gondii and a rational target for therapeutic intervention.