ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nör, Jacques E."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Advanced Scaffolds for Dental Pulp and Periodontal Regeneration
    (Elsevier, 2017-10) Bottino, Marco C.; Pankajakshan, Divya; Nör, Jacques E.; Biomedical Sciences and Comprehensive Care, School of Dentistry
    No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented.
  • Loading...
    Thumbnail Image
    Item
    Effects of ciprofloxacin-containing antimicrobial scaffolds on dental pulp stem cell viability-In vitro studies
    (Elsevier, 2015-08) Kamocki, Krzysztof; Nör, Jacques E.; Bottino, Marco C.; Department of Restorative Dentistry, School of Dentistry
    OBJECTIVE: A combination of antibiotics, including but not limited to metronidazole (MET) and ciprofloxacin (CIP), has been indicated to eradicate bacteria in necrotic immature permanent teeth prior to regenerative procedures. It has been shown clinically that antibiotic pastes may lead to substantial stem cell death. The aim of this study was to synthesise scaffolds containing various concentrations of CIP to enhance cell viability while preserving antimicrobial properties. DESIGN: Polydioxanone (PDS)-based electrospun scaffolds were processed with decreasing CIP concentrations (25-1 wt.%) and morphologically evaluated using scanning electron microscopy (SEM). Cytotoxicity assays were performed to determine whether the amount of CIP released from the scaffolds would lead to human dental pulp stem cell (hDPSC) toxicity. Similarly, WST-1 assays were performed to evaluate the impact of CIP release on hDPSC proliferation. Pure PDS scaffolds and saturated double antibiotic solution MET/CIP (DAP) served as both positive and negative controls, respectively. Antibacterial efficacy against E. faecalis (Ef) was tested. RESULTS: A significant decrease in hDPSC' viability at concentrations 5-25 wt.% was observed. However, concentrations below 5wt.% did not impair cell viability. Data from the WST-1 assays indicated no detrimental impact on cell proliferation for scaffolds containing 2.5 wt.% CIP or less. Significant antimicrobial properties were seen for CIP-scaffolds at lower concentrations (i.e., 1 and 2.5 wt.%). CONCLUSION: The obtained data demonstrated that a reduced concentration of CIP incorporated into PDS-based scaffolds maintains its antimicrobial properties while enhancing viability and proliferation of dental pulp stem cells.
  • Loading...
    Thumbnail Image
    Item
    Injectable Highly Tunable Oligomeric Collagen Matrices for Dental Tissue Regeneration
    (ACS, 2020-01) Pankajakshan, Divya; Voytik-Harbin, Sherry L.; Nör, Jacques E.; Bottino, Marco C.; Biomedical Sciences and Comprehensive Care, School of Dentistry
    Current stem cell transplantation approaches lack efficacy, because they limit cell survival and retention and, more importantly, lack a suitable cellular niche to modulate lineage-specific differentiation. Here, we evaluate the intrinsic ability of type I oligomeric collagen matrices to modulate dental pulp stem cells (DPSCs) endothelial and odontogenic differentiation as a potential stem cell-based therapy for regenerative endodontics. DPSCs were encapsulated in low-stiffness (235 Pa) and high-stiffness (800 Pa) oligomeric collagen matrices and then evaluated for long-term cell survival, as well as endothelial and odontogenic differentiation following in vitro cell culture. Moreover, the effect of growth factor incorporation, i.e., vascular endothelial growth factor (VEGF) into 235 Pa oligomeric collagen or bone morphogenetic protein (BMP2) into the 800 Pa oligomeric collagen counterpart on endothelial or odontogenic differentiation of encapsulated DPSCs was investigated. DPSCs-laden oligomeric collagen matrices allowed long-term cell survival. Real time polymerase chain reaction (RT-PCR) data showed that the DPSCs cultured in 235 Pa matrices demonstrated an increased expression of endothelial markers after 28 days, and the effect was enhanced upon VEGF incorporation. There was a significant increase in alkaline phosphatase (ALP) activity at Day 14 in the 800 Pa DPSCs-laden oligomeric collagen matrices, regardless of BMP2 incorporation. However, Alizarin S data demonstrated higher mineralization by Day 21 and the effect was amplified in BMP2-modified matrices. Herein, we present key data that strongly support future research aimed at clinical translation of an injectable oligomeric collagen system for delivery and fate regulation of DPSCs to enable pulp and dentin regeneration at specific locations of the root canal system.
  • Loading...
    Thumbnail Image
    Item
    A novel patient-specific three-dimensional drug delivery construct for regenerative endodontics
    (Wiley, 2018-10-03) Bottino, Marco C.; Albuquerque, Maria T. P.; Azabi, Asma; Münchow, Eliseu A.; Spolnik, Kenneth J.; Nör, Jacques E.; Edwards, Paul C.; Oral Pathology, Medicine and Radiology, School of Dentistry
    Evoked bleeding (EB) clinical procedure, comprising a disinfection step followed by periapical tissue laceration to induce the ingrowth of undifferentiated stem cells from the periodontal ligament and alveolar bone, is currently the only regenerative-based therapeutic approach to treating pulp tissue necrosis in undeveloped (immature) permanent teeth approved in the United States. Yet, the disinfection step using antibiotic-based pastes leads to cytotoxic, warranting a biocompatible strategy to promote root canal disinfection with no or minimal side-effects to maximize the regenerative outcomes. The purpose of this investigation was to develop a tubular three-dimensional (3D) triple antibiotic-eluting construct for intracanal drug delivery. Morphological (scanning electron microscopy), chemical (Fourier transform infrared spectroscopy), and mechanical (tensile testing) characteristics of the polydioxanone-based triple antibiotic-eluting fibers were assessed. The antimicrobial properties of the tubular 3D constructs were determined in vitro and in vivo using an infected (Actinomyces naeslundii) dentin tooth slice model and a canine method of periapical disease, respectively. The in vitro data indicated significant antimicrobial activity and the ability to eliminate bacterial biofilm inside dentinal tubules. In vivo histological findings demonstrated that, using the EB procedure, the tubular 3D triple antibiotic-eluting construct allowed the formation of an appropriate environment that led to apex closure and the ingrowth of a thin layer of osteodentin-like tissue into the root canal. Taken together, these findings indicate that our novel drug delivery construct is a promising biocompatible disinfection strategy for immature permanent teeth with necrotic pulps.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University