ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Myint, Leslie"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Metabolomics Approach to Identify Metabolites Associated With Mortality in Patients Receiving Maintenance Hemodialysis
    (Elsevier, 2024-06-29) Al Awadhi, Solaf; Myint, Leslie; Guallar, Eliseo; Clish, Clary B.; Wulczyn, Kendra E.; Kalim, Sahir; Thadhani, Ravi; Segev, Dorry L.; McAdams DeMarco, Mara; Moe, Sharon M.; Moorthi, Ranjani N.; Hostetter, Thomas H.; Himmelfarb, Jonathan; Meyer, Timothy W.; Powe, Neil R.; Tonelli, Marcello; Rhee, Eugene P.; Shafi, Tariq; Medicine, School of Medicine
    Introduction: Uremic toxins contributing to increased risk of death remain largely unknown. We used untargeted metabolomics to identify plasma metabolites associated with mortality in patients receiving maintenance hemodialysis. Methods: We measured metabolites in serum samples from 522 Longitudinal US/Canada Incident Dialysis (LUCID) study participants. We assessed the association between metabolites and 1-year mortality, adjusting for age, sex, race, cardiovascular disease, diabetes, body mass index, serum albumin, Kt/Vurea, dialysis duration, and country. We modeled these associations using limma, a metabolite-wise linear model with empirical Bayesian inference, and 2 machine learning (ML) models: Least absolute shrinkage and selection operator (LASSO) and random forest (RF). We accounted for multiple testing using a false discovery rate (pFDR) adjustment. We defined significant mortality-metabolite associations as pFDR < 0.1 in the limma model and metabolites of at least medium importance in both ML models. Results: The mean age of the participants was 64 years, the mean dialysis duration was 35 days, and there were 44 deaths (8.4%) during a 1-year follow-up period. Two metabolites were significantly associated with 1-year mortality. Quinolinate levels (a kynurenine pathway metabolite) were 1.72-fold higher in patients who died within year 1 compared with those who did not (pFDR, 0.009), wheras mesaconate levels (an emerging immunometabolite) were 1.57-fold higher (pFDR, 0.002). An additional 42 metabolites had high importance as per LASSO, 46 per RF, and 9 per both ML models but were not significant per limma. Conclusion: Quinolinate and mesaconate were significantly associated with a 1-year risk of death in incident patients receiving maintenance hemodialysis. External validation of our findings is needed.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University