- Browse by Author
Browsing by Author "Myers, Candace R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Hominids adapted to metabolize ethanol long before human-directed fermentation(PNAS, 2015-01-13) Carrigan, Matthew A.; Uryasev, Oleg; Frye, Carole B.; Eckman, Blair L.; Myers, Candace R.; Hurley, Thomas D.; Benner, Steven A.; Department of Biochemistry & Molecular Biology, IU School of MedicinePaleogenetics is an emerging field that resurrects ancestral proteins from now-extinct organisms to test, in the laboratory, models of protein function based on natural history and Darwinian evolution. Here, we resurrect digestive alcohol dehydrogenases (ADH4) from our primate ancestors to explore the history of primate-ethanol interactions. The evolving catalytic properties of these resurrected enzymes show that our ape ancestors gained a digestive dehydrogenase enzyme capable of metabolizing ethanol near the time that they began using the forest floor, about 10 million y ago. The ADH4 enzyme in our more ancient and arboreal ancestors did not efficiently oxidize ethanol. This change suggests that exposure to dietary sources of ethanol increased in hominids during the early stages of our adaptation to a terrestrial lifestyle. Because fruit collected from the forest floor is expected to contain higher concentrations of fermenting yeast and ethanol than similar fruits hanging on trees, this transition may also be the first time our ancestors were exposed to (and adapted to) substantial amounts of dietary ethanol.Item Kinetic Analysis of Primate and Ancestral Alcohol Dehydrogenases(2012-11-29) Myers, Candace R.; Hurley, Thomas D., 1961-; Goebl, Mark G.; Mosley, Amber L.Seven human alcohol dehydrogenase genes (which encode the primary enzymes involved in alcohol metabolism) are grouped into classes based on function and sequence identity. While the Class I ADH isoenzymes contribute significantly to ethanol metabolism in the liver, Class IV ADH isoenzymes are involved in the first-pass metabolism of ethanol. It has been suggested that the ability to efficiently oxidize ethanol occurred late in primate evolution. Kinetic data obtained from the Class I ADH isoenzymes of marmoset and brown lemur, in addition to data from resurrected ancestral human Class IV ADH isoenzymes, supports this proposal--suggesting that two major events which occurred during primate evolution resulted in major adaptations toward ethanol metabolism. First, while human Class IV ADH first appeared 520 million years ago, a major adaptation to ethanol occurred very recently (approximately 15 million years ago); which was caused by a single amino acid change (A294V). This change increases the catalytic efficiency of the human Class IV enzymes toward ethanol by over 79-fold. Secondly, the Class I ADH form developed 80 million years ago--when angiosperms first began to produce fleshy fruits whose sugars are fermented to ethanol by yeasts. This was followed by the duplication and divergence of distinct Class I ADH isoforms--which occurred during mammalian radiation. This duplication event was followed by a second duplication/divergence event which occurred around or just before the emergence of prosimians (some 40 million years ago). We examined the multiple Class I isoforms from species with distinct dietary preferences (lemur and marmoset) in an effort to correlate diets rich in fermentable fruits with increased catalytic capacity toward ethanol oxidation. Our kinetic data support this hypothesis in that the species with a high content of fermentable fruit in its diet possess greater catalytic capacity toward ethanol.