ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mund, Julie A."

Now showing 1 - 10 of 12
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Brief report: Endothelial colony-forming cells and inflammatory monocytes in HIV
    (Ovid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkins, 2015-04-15) Hays, Travis R.; Mund, Julie A.; Liu, Ziyue; Case, Jamie; Ingram, David A.; Gupta, Samir K.; Department of Medicine, IU School of Medicine
    The relationships between HIV infection, monocyte activation, and endothelial colony-forming cells (ECFCs) are unknown. We compared ECFC, intermediate monocytes (CD14 CD16), and nonclassical monocytes (CD14 CD16) levels in HIV-infected participants virologically suppressed on antiretroviral therapy, HIV-infected treatment-naive participants, and HIV-uninfected healthy controls. ECFC levels were significantly higher in the HIV-infected virologically suppressed group compared with the uninfected controls. CD14 CD16 percentages (but not CD14 CD16 cells) were significantly higher in both HIV-infected groups vs. uninfected controls. In the HIV-infected groups, ECFCs and CD14 CD16 intermediate monocytes were significantly and inversely correlated. Lower availability of ECFCs may partly explain the relationship between greater intermediate monocytes and atherosclerosis in HIV.
  • Loading...
    Thumbnail Image
    Item
    Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: a phase 2 trial
    (Springer Nature, 2021-01) Fisher, Michael J.; Shih, Chie-Schin; Rhodes, Steven D.; Armstrong, Amy E.; Wolters, Pamela L.; Dombi, Eva; Zhang, Chi; Angus, Steven P.; Johnson, Gary L.; Packer, Roger J.; Allen, Jeffrey C.; Ullrich, Nicole J.; Goldman, Stewart; Gutmann, David H.; Plotkin, Scott R.; Rosser, Tena; Robertson, Kent A.; Widemann, Brigitte C.; Smith, Abbi E.; Bessler, Waylan K.; He, Yongzheng; Park, Su-Jung; Mund, Julie A.; Jiang, Li; Bijangi-Vishehsaraei, Khadijeh; Robinson, Coretta Thomas; Cutter, Gary R.; Korf, Bruce R.; Blakeley, Jaishri O.; Clapp, D. Wade; Pediatrics, School of Medicine
    Neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNs) are progressive, multicellular neoplasms that cause morbidity and may transform to sarcoma. Treatment of Nf1fl/fl;Postn-Cre mice with cabozantinib, an inhibitor of multiple tyrosine kinases, caused a reduction in PN size and number and differential modulation of kinases in cell lineages that drive PN growth. Based on these findings, the Neurofibromatosis Clinical Trials Consortium conducted a phase II, open-label, nonrandomized Simon two-stage study to assess the safety, efficacy and biologic activity of cabozantinib in patients ≥16 years of age with NF1 and progressive or symptomatic, inoperable PN ( NCT02101736 ). The trial met its primary outcome, defined as ≥25% of patients achieving a partial response (PR, defined as ≥20% reduction in target lesion volume as assessed by magnetic resonance imaging (MRI)) after 12 cycles of therapy. Secondary outcomes included adverse events (AEs), patient-reported outcomes (PROs) assessing pain and quality of life (QOL), pharmacokinetics (PK) and the levels of circulating endothelial cells and cytokines. Eight of 19 evaluable (42%) trial participants achieved a PR. The median change in tumor volume was 15.2% (range, +2.2% to -36.9%), and no patients had disease progression while on treatment. Nine patients required dose reduction or discontinuation of therapy due to AEs; common AEs included gastrointestinal toxicity, hypothyroidism, fatigue and palmar plantar erythrodysesthesia. A total of 11 grade 3 AEs occurred in eight patients. Patients with PR had a significant reduction in tumor pain intensity and pain interference in daily life but no change in global QOL scores. These data indicate that cabozantinib is active in NF1-associated PN, resulting in tumor volume reduction and pain improvement.
  • Loading...
    Thumbnail Image
    Item
    Genetic disruption of the small GTPase RAC1 prevents plexiform neurofibroma formation in mice with neurofibromatosis type 1
    (Elsevier, 2020-07-17) Mund, Julie A.; Park, SuJung; Smith, Abbi E.; He, Yongzheng; Jiang, Li; Hawley, Eric; Roberson, Michelle J.; Mitchell, Dana K.; Abu-Sultanah, Mohannad; Yuan, Jin; Bessler, Waylan K.; Sandusky, George; Chen, Shi; Zhang, Chi; Rhodes, Steven D.; Clapp, D. Wade; Pediatrics, School of Medicine
    Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 tumor suppressor gene. NF1 encodes neurofibromin, a GTPase-activating protein for RAS proto-oncogene GTPase (RAS). Plexiform neurofibromas are a hallmark of NF1 and result from loss of heterozygosity of NF1 in Schwann cells, leading to constitutively activated p21RAS. Given the inability to target p21RAS directly, here we performed an shRNA library screen of all human kinases and Rho-GTPases in a patient-derived NF1-/- Schwann cell line to identify novel therapeutic targets to disrupt PN formation and progression. Rho family members, including Rac family small GTPase 1 (RAC1), were identified as candidates. Corroborating these findings, we observed that shRNA-mediated knockdown of RAC1 reduces cell proliferation and phosphorylation of extracellular signal-regulated kinase (ERK) in NF1-/- Schwann cells. Genetically engineered Nf1flox/flox;PostnCre+ mice, which develop multiple PNs, also exhibited increased RAC1-GTP and phospho-ERK levels compared with Nf1flox/flox;PostnCre- littermates. Notably, mice in which both Nf1 and Rac1 loci were disrupted (Nf1flox/floxRac1flox/flox;PostnCre+) were completely free of tumors and had normal phospho-ERK activity compared with Nf1flox/flox ;PostnCre+ mice. We conclude that the RAC1-GTPase is a key downstream node of RAS and that genetic disruption of the Rac1 allele completely prevents PN tumor formation in vivo in mice.
  • Loading...
    Thumbnail Image
    Item
    Gestational diabetes induces alterations in the function of neonatal endothelial colony forming cells
    (Springer Nature, 2014) Blue, Emily K.; DiGiuseppe, Robert; Derr-Yellin, Ethel; Acosta, Juan Carlos; Pay, S. Louise; Hanenberg, Helmut; Schellinger, Megan M.; Quinney, Sara K.; Mund, Julie A.; Case, Jamie; Haneline, Laura S.; Pediatrics, School of Medicine
    Background: Children born to mothers with gestational diabetes mellitus (GDM) experience increased risk of developing hypertension, type 2 diabetes mellitus, and obesity. Disrupted function of endothelial colony-forming cells (ECFCs) may contribute to this enhanced risk. The goal of this study was to determine whether cord blood ECFCs from GDM pregnancies exhibit altered functionality. Methods: ECFCs isolated from the cord blood of control and GDM pregnancies were assessed for proliferation, senescence, and Matrigel network formation. The requirement for p38MAPK in hyperglycemia-induced senescence was determined using inhibition and overexpression studies. Results: GDM-exposed ECFCs were more proliferative than control ECFCs. However, GDM-exposed ECFCs exhibited decreased network-forming ability in Matrigel. Aging of ECFCs by serial passaging led to increased senescence and reduced proliferation of GDM-exposed ECFCs. ECFCs from GDM pregnancies were resistant to hyperglycemia-induced senescence compared with those from controls. In response to hyperglycemia, control ECFCs activated p38MAPK, which was required for hyperglycemia-induced senescence. In contrast, GDM-exposed ECFCs showed no change in p38MAPK activation under equivalent conditions. Conclusion: Intrauterine exposure of ECFCs to GDM induces unique phenotypic alterations. The resistance of GDM-exposed ECFCs to hyperglycemia-induced senescence and decreased p38MAPK activation suggest that these progenitor cells have undergone changes that induce tolerance to a hyperglycemic environment.
  • Loading...
    Thumbnail Image
    Item
    Human Proangiogenic Circulating Hematopoietic Stem and Progenitor Cells Promote Tumor Growth in an Orthotopic Melanoma Xenograft Model
    (Springer, 2013) Mund, Julie A.; Shannon, Harlan; Sinn, Anthony L.; Cai, Shanbao; Wang, Haiyan; Pradhan, Kamnesh R.; Pollok, Karen E.; Case, Jamie; Pediatrics, School of Medicine
    We previously identified a distinct population of human circulating hematopoietic stem and progenitor cells (CHSPCs; CD14(-)glyA(-)CD34(+)AC133(+/-)CD45(dim)CD31(+) cells) in the peripheral blood (PB) and bone marrow, and their frequency in the PB can correlate with disease state. The proangiogenic subset (pCHSPC) play a role in regulating tumor progression, for we previously demonstrated a statistically significant increase in C32 melanoma growth in NOD.Cg-Prkdc (scid) (NOD/SCID) injected with human pCHSPCs (p < 0.001). We now provide further evidence that pCHSPCs possess proangiogenic properties. In vitro bio-plex cytokine analyses and tube forming assays indicate that pCHSPCs secrete a proangiogenic profile and promote vessel formation respectively. We also developed a humanized bone marrow-melanoma orthotopic model to explore in vivo the biological significance of the pCHSPC population. Growth of melanoma xenografts increased more rapidly at 3-4 weeks post-tumor implantation in mice previously transplanted with human CD34(+) cells compared to control mice. Increases in pCHSPCs in PB correlated with increases in tumor growth. Additionally, to determine if we could prevent the appearance of pCHSPCs in the PB, mice with humanized bone marrow-melanoma xenografts were administered Interferon α-2b, which is used clinically for treatment of melanoma. The mobilization of the pCHSPCs was decreased in the mice with the humanized bone marrow-melanoma xenografts. Taken together, these data indicate that pCHSPCs play a functional role in tumor growth. The novel in vivo model described here can be utilized to further validate pCHSPCs as a biomarker of tumor progression. The model can also be used to screen and optimize anticancer/anti-angiogenic therapies in a humanized system.
  • Loading...
    Thumbnail Image
    Item
    Impaired compensation to femoral artery ligation in diet-induced obese mice is primarily mediated via suppression of collateral growth by Nox2 and p47phox.
    (APS, 2015-10) DiStasi, Matthew R.; Mund, Julie A.; Bohlen, H. Glenn; Miller, Steven J.; Ingram, David A.; Dalsing, Michael C.; Unthank, Joseph L.; Department of Cellular and Integrative Physiology, IU School of Medicine
    Novel observations in this report include the demonstration of collateral resistance as the primary limitation of hindlimb perfusion, elevated NADPH oxidase (Nox) expression in peripheral arteries, unimpaired monocyte mobilization and demargination, and reversal of suppressed principle collateral growth by Nox2 ablation/inhibition in a diet-induced obese mouse model of arterial occlusion.
  • Loading...
    Thumbnail Image
    Item
    In vitro effect of chlorambucil on human glioma cell lines (SF767 and U87-MG), and human microvascular endothelial cell (HMVEC) and endothelial progenitor cells (ECFCs), in the context of plasma chlorambucil concentrations in tumor-bearing dogs
    (PLOS, 2018-09-07) Reese, Michael J.; Knapp, Deborah W.; Anderson, Kimberly M.; Mund, Julie A.; Case, Jamie; Jones, David R.; Packer, Rebecca A.; Medicine, School of Medicine
    The objective of this study was to investigate a possible mechanism of action of metronomic chlorambucil on glioma by studying the in vitro cytotoxicity and anti-angiogenic effects on glioma and endothelial cells, respectively. The in vitro LD50 and IC50 of chlorambucil were determined using human SF767 and U87-MG glioma cell lines, human microvascular endothelial cells (HMVECs) and human endothelial colony forming cells (ECFCs). Results were analyzed in the context of chlorambucil concentrations measured in the plasma of tumor-bearing dogs receiving 4 mg m-2 metronomic chlorambucil. The LD50 and IC50 of chlorambucil were 270 μM and 114 μM for SF767, and 390 μM and 96 μM for U87-MG, respectively. The IC50 of chlorambucil was 0.53 μM and 145 μM for the HMVECs and ECFCs, respectively. In pharmacokinetic studies, the mean plasma Cmax of chlorambucil was 0.06 μM. Results suggest that metronomic chlorambucil in dogs does not achieve plasma concentrations high enough to cause direct cytotoxic or growth inhibitory effects on either glioma or endothelial cells.
  • Loading...
    Thumbnail Image
    Item
    Neurofibromin Deficient Myeloid Cells are Critical Mediators of Aneurysm Formation In Vivo
    (Ovid Technologies Wolters Kluwer -American Heart Association, 2014-03-18) Li, Fang; Downing, Brandon D.; Smiley, Lucy C.; Mund, Julie A.; DiStasi, Matthew R.; Bessler, Waylan K.; Sarchet, Kara N.; Hinds, Daniel M.; Kamendulis, Lisa M.; Hingtgen, Cynthia M.; Case, Jamie; Clapp, D. Wade; Conway, Simon J.; Stansfield, Brian K.; Ingram, David A.; Department of Pediatrics, IU School of Medicine
    Background Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results Utilizing an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/−) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/− aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin, reduced aneurysm formation in Nf1+/− mice. Conclusion These data provide genetic and pharmacologic evidence that Nf1+/− myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target.
  • Loading...
    Thumbnail Image
    Item
    Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans
    (Elsevier, 2016-08) Bessler, Waylan K.; Hudson, Farlyn Z.; Zhang, Hanfang; Harris, Valerie; Wang, Yusi; Mund, Julie A.; Downing, Brandon; Ingram, David A., Jr; Case, Jamie; Fulton, David J.; Stansfield, Brian K.; Pediatrics, School of Medicine
    Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions.
  • Loading...
    Thumbnail Image
    Item
    Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation
    (Oxford University Press, 2016-03-15) Bessler, Waylan K.; Kim, Grace; Hudson, Farlyn Z.; Mund, Julie A.; Mali, Raghuveer; Menon, Keshav; Kapur, Reuben; Clapp, D. Wade; Ingram Jr., David A.; Stansfield, Brian K.; Department of Pediatrics, IU School of Medicine
    Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University