- Browse by Author
Browsing by Author "Mufumba, Ivan"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Blackwater fever and acute kidney injury in children hospitalized with an acute febrile illness: pathophysiology and prognostic significance(BMC, 2022-07-01) Conroy, Andrea L.; Hawkes, Michael T.; Leligdowicz, Aleksandra; Mufumba, Ivan; Starr, Michelle C.; Zhong, Kathleen; Namasopo, Sophie; John, Chandy C.; Opoka, Robert O.; Kain, Kevin C.; Pediatrics, School of MedicineBackground: Acute kidney injury (AKI) and blackwater fever (BWF) are related but distinct renal complications of acute febrile illness in East Africa. The pathogenesis and prognostic significance of BWF and AKI are not well understood. Methods: A prospective observational cohort study was conducted to evaluate the association between BWF and AKI in children hospitalized with an acute febrile illness. Secondary objectives were to examine the association of AKI and BWF with (i) host response biomarkers and (ii) mortality. AKI was defined using the Kidney Disease: Improving Global Outcomes criteria and BWF was based on parental report of tea-colored urine. Host markers of immune and endothelial activation were quantified on admission plasma samples. The relationships between BWF and AKI and clinical and biologic factors were evaluated using multivariable regression. Results: We evaluated BWF and AKI in 999 children with acute febrile illness (mean age 1.7 years (standard deviation 1.06), 55.7% male). At enrollment, 8.2% of children had a history of BWF, 49.5% had AKI, and 11.1% had severe AKI. A history of BWF was independently associated with 2.18-fold increased odds of AKI (95% CI 1.15 to 4.16). When examining host response, severe AKI was associated with increased immune and endothelial activation (increased CHI3L1, sTNFR1, sTREM-1, IL-8, Angpt-2, sFlt-1) while BWF was predominantly associated with endothelial activation (increased Angpt-2 and sFlt-1, decreased Angpt-1). The presence of severe AKI, not BWF, was associated with increased risk of in-hospital death (RR, 2.17 95% CI 1.01 to 4.64) adjusting for age, sex, and disease severity. Conclusions: BWF is associated with severe AKI in children hospitalized with a severe febrile illness. Increased awareness of AKI in the setting of BWF, and improved access to AKI diagnostics, is needed to reduce disease progression and in-hospital mortality in this high-risk group of children through early implementation of kidney-protective measures.Item Malaria-Associated Acute Kidney Injury in African Children: Prevalence, Pathophysiology, Impact, and Management Challenges(Dovepress, 2021-07-08) Batte, Anthony; Berrens, Zachary; Murphy, Kristin; Mufumba, Ivan; Sarangam, Maithri L.; Hawkes, Michael T.; Conroy, Andrea L.; Pediatrics, School of MedicineAcute kidney injury (AKI) is emerging as a complication of increasing clinical importance associated with substantial morbidity and mortality in African children with severe malaria. Using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define AKI, an estimated 24-59% of African children with severe malaria have AKI with most AKI community-acquired. AKI is a risk factor for mortality in pediatric severe malaria with a stepwise increase in mortality across AKI stages. AKI is also a risk factor for post-discharge mortality and is associated with increased long-term risk of neurocognitive impairment and behavioral problems in survivors. Following injury, the kidney undergoes a process of recovery and repair. AKI is an established risk factor for chronic kidney disease and hypertension in survivors and is associated with an increased risk of chronic kidney disease in severe malaria survivors. The magnitude of the risk and contribution of malaria-associated AKI to chronic kidney disease in malaria-endemic areas remains undetermined. Pathways associated with AKI pathogenesis in the context of pediatric severe malaria are not well understood, but there is emerging evidence that immune activation, endothelial dysfunction, and hemolysis-mediated oxidative stress all directly contribute to kidney injury. In this review, we outline the KDIGO bundle of care and highlight how this could be applied in the context of severe malaria to improve kidney perfusion, reduce AKI progression, and improve survival. With increased recognition that AKI in severe malaria is associated with substantial post-discharge morbidity and long-term risk of chronic kidney disease, there is a need to increase AKI recognition through enhanced access to creatinine-based and next-generation biomarker diagnostics. Long-term studies to assess severe malaria-associated AKI's impact on long-term health in malaria-endemic areas are urgently needed.Item Renin as a Biomarker of Acute Kidney Injury and Mortality in Children With Severe Malaria or Sickle Cell Disease(Springer Nature, 2023-09-12) Adan, Daniel, Jr.; Batte, Anthony; Namazzi, Ruth; Mufumba, Ivan; Kazinga, Caroline; Mellencamp, Kagan A.; Bond, Caitlin; Opoka, Robert O.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground: Globally, a very high percentage of acute kidney injury (AKI) occurs in low- and middle-income countries (LMICs) where late recognition contributes to increased mortality. There are challenges with using existing biomarkers of AKI in LMICs. Emerging evidence suggests renin may serve as a biomarker of kidney injury that can overcome limitations in creatinine-based diagnostics. Methods: Two study populations in Uganda were assessed. Cohort #1 was a two-site, prospective cohort study enrolling 600 children with severe malaria (SM). Cohort #2 was a prospective cohort study enrolling 185 children with sickle cell disease (SCD) hospitalized with a vaso-occlusive crisis. Plasma or serum renin concentrations were measured in both cohorts of children at the time of hospital admission using Luminex® (Luminex Corporation, Austin, Texas, United States) or enzyme-linked immunosorbent assay (ELISA), respectively. We assessed the ability of renin to discriminate between children with or without AKI and between children who survived and children who died using receiver operating characteristic curves. Results: In both cohorts, renin concentrations were strongly associated with AKI and mortality. Renin was able to discriminate between children with or without AKI with an area under the curve (AUC) of 0.70 (95%CI, 0.65-0.74) in children with SM and 0.72 (95%CI, 0.6co3-0.81) in children with SCD. Renin was able to discriminate between children who survived and children who died with an AUC of 0.73 (95%CI, 0.63-0.83) in children with SM and 0.94 (95%CI, 0.89-0.99) in children with SCD. In Cohort #2, we compared renin against urine neutrophil gelatinase-associated lipocalin (NGAL) as the leading biomarker of AKI, and it had comparable performance in discriminating AKI and predicting mortality. Conclusions: In two independent populations of children at risk of AKI with key differences in the etiology of kidney injury, renin was strongly associated with AKI and mortality and had moderate to good diagnostic performance to predict mortality.Item sTREM-1: A Biomarker of Mortality in Severe Malaria Impacted by Acute Kidney Injury(Oxford University Press, 2024) Mufumba, Ivan; Kazinga, Caroline; Namazzi, Ruth; Opoka, Robert O.; Batte, Anthony; Bond, Caitlin; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground: Malaria is an important cause of mortality in African children. Identification of biomarkers to identify children at risk of mortality has the potential to improve outcomes. Methods: We evaluated 11 biomarkers of host response in 592 children with severe malaria. The primary outcome was biomarker performance for predicting mortality. Biomarkers were evaluated using receiver operating characteristic (ROC) curve analysis comparing the area under the ROC curve (AUROC). Results: Mortality was 7.3% among children in the study with 72% of deaths occurring within 24 hours of admission. Among the candidate biomarkers, soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) had the highest AUROC (0.78 [95% confidence interval, .70-.86]), outperforming several other biomarkers including C-reactive protein and procalcitonin. sTREM-1 was the top-performing biomarker across prespecified subgroups (malaria definition, site, sex, nutritional status, age). Using established cutoffs, we evaluated mortality across sTREM-1 risk zones. Among children with acute kidney injury, 39.9% of children with a critical-risk sTREM-1 result had an indication for dialysis. When evaluated relative to a disease severity score, sTREM-1 improved mortality prediction (difference in AUROC, P = .016). Conclusions: sTREM-1 is a promising biomarker to guide rational allocation of clinical resources and should be integrated into clinical decision support algorithms, particularly when acute kidney injury is suspected.