- Browse by Author
Browsing by Author "Muehlbauer, Michael J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Disrupted Maturation of the Microbiota and Metabolome among Extremely Preterm Infants with Postnatal Growth Failure(Springer Nature, 2019-06-03) Younge, Noelle E.; Newgard, Christopher B.; Cotten, C. Michael; Goldberg, Ronald N.; Muehlbauer, Michael J.; Bain, James R.; Stevens, Robert D.; O’Connell, Thomas M.; Rawls, John F.; Seed, Patrick C.; Ashley, Patricia L.; Otolaryngology -- Head and Neck Surgery, School of MedicineGrowth failure during infancy is a major global problem that has adverse effects on long-term health and neurodevelopment. Preterm infants are disproportionately affected by growth failure and its effects. Herein we found that extremely preterm infants with postnatal growth failure have disrupted maturation of the intestinal microbiota, characterized by persistently low diversity, dominance of pathogenic bacteria within the Enterobacteriaceae family, and a paucity of strictly anaerobic taxa including Veillonella relative to infants with appropriate postnatal growth. Metabolomic profiling of infants with growth failure demonstrated elevated serum acylcarnitines, fatty acids, and other byproducts of lipolysis and fatty acid oxidation. Machine learning algorithms for normal maturation of the microbiota and metabolome among infants with appropriate growth revealed a pattern of delayed maturation of the microbiota and metabolome among infants with growth failure. Collectively, we identified novel microbial and metabolic features of growth failure in preterm infants and potentially modifiable targets for intervention.Item Metabolic Changes with Base-Loading in CKD(American Society of Nephrology, 2018-08-07) Scialla, Julia J.; Brown, Landon; Gurley, Susan; Corcoran, David L.; Bain, James R.; Muehlbauer, Michael J.; O’Neal, Sara K.; M. O’Connell, Thomas; Wolf, Myles; Melamed, Michal L.; Hostetter, Thomas H.; Abramowitz, Matthew K.; Otolaryngology -- Head and Neck Surgery, School of MedicineIn small, randomized studies, treatment with sodium bicarbonate slowed kidney function decline in patients with CKD, possibly by lowering urine ammonium or inhibiting the renin-angiotensin-aldosterone or endothelin-1 pathways (1). Understanding the metabolic effects of alkali supplementation may reveal new candidate mechanisms. With this goal in mind, we profiled changes in systemic metabolites after treatment with sodium bicarbonate within a previously performed crossover trial of oral sodium bicarbonate (2).Item Urine and Plasma Metabolome of Healthy Adults Consuming the DASH (Dietary Approaches to Stop Hypertension) Diet: A Randomized Pilot Feeding Study(MDPI, 2021-05-22) Pourafshar, Shirin; Nicchitta, Mira; Tyson, Crystal C.; Svetkey, Laura P.; Corcoran, David L.; Bain, James R.; Muehlbauer, Michael J.; Ilkayeva, Olga; O’Connell, Thomas M; Lin, Pao-Hwa; Scialla, Julia J.; Otolaryngology -- Head and Neck Surgery, School of MedicineWe aimed to identify plasma and urine metabolites altered by the Dietary Approaches to Stop Hypertension (DASH) diet in a post-hoc analysis of a pilot feeding trial. Twenty adult participants with un-medicated hypertension consumed a Control diet for one week followed by 2 weeks of random assignment to either Control or DASH diet. Non-missing fasting plasma (n = 56) and 24-h urine (n = 40) were used to profile metabolites using untargeted gas chromatography/mass spectrometry. Linear models were used to compare metabolite levels between the groups. In urine, 19 identifiable untargeted metabolites differed between groups at p < 0.05. These included a variety of phenolic acids and their microbial metabolites that were higher during the DASH diet, with many at false discovery rate (FDR) adjusted p < 0.2. In plasma, eight identifiable untargeted metabolites were different at p < 0.05, but only gamma-tocopherol was significantly lower on DASH at FDR adjusted p < 0.2. The results provide insights into the mechanisms of benefit of the DASH diet.