- Browse by Author
Browsing by Author "Mosley, Amber"
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item 12-lipoxygenase Promotes Macrophage Infiltration and Pancreatic Islet Dysfunction in the Vertebrate Models of Diabetes Pathogenesis(2020-05) Kulkarni, Abhishek Anant; Harrington, Maureen; Mirmira, Raghavendra; Anderson, Ryan; Goebl, Mark; Mosley, Amber; Marrs, JamesDiabetes is a morbid metabolic disorder that affects almost 500 million people worldwide. Although multiple factors contribute to diabetes pathogenesis, pancreatic islet inflammation and dysfunction are shared characteristics of its major forms. 12- lipoxygenase (12-LOX), an enzyme involved in lipid metabolism, has been implicated in islet inflammation. 12-LOX generates reactive oxygen species (ROS) that activate inflammation and serve as major contributors to islet dysfunction. Importantly, since ROS are transient moieties, they are challenging to study in vivo. Hence, establishing better animal models of ROS-mediated stress is critical to facilitate the discovery and preclinical testing of novel diabetes therapeutics. Here, I have adapted a zebrafish model of conditional β-cell injury, which is regulated by the administration of the prodrug metronidazole (MTZ), to study responses to ROS in vivo. I demonstrate that with MTZ treatment, ROS are generated within β-cells and subsequently exhibit recruitment of macrophages into the islet and induction of β-cell death. I utilized this model to uncover roles for macrophages and 12-LOX during islet injury. Excessive macrophage infiltration exacerbates islet inflammation and dysfunction. Interestingly, on the depletion of macrophages in zebrafish, I observed that β-cells recovered normal function upon cessation of prodrug treatment. This suggests that infiltrating macrophages promote maladaptive inflammation and premature removal of damaged β-cells. Thus, limiting the macrophage infiltration may be a therapeutic approach to restoring β-cell function. Based on the established roles of 12-LOX in other contexts, I hypothesized that its inhibition would prevent the localized infiltration of proinflammatory macrophages. To test this, I used both zebrafish and mouse models and observed a significant reduction in macrophage migration upon loss of 12- LOX activity. Furthermore, I found that expression of CXCR3, a crucial receptor regulating migration, was significantly reduced in 12-LOX loss-of-function macrophages. These data suggest a role for 12-LOX in macrophages, which is conserved across species. Collectively, my study reveals novel roles for 12-LOX in macrophage function and provides testable therapeutic targets for the resolution of inflammation-induced damage in the pancreatic islets.Item Biochemical and pharmacological characterization of the Atg8 conjugation system in toxoplasma gondii(2017-06-28) Varberg, Joseph M.; Arrizabalaga, Gustavo; Sullivan, William J., Jr.; Mosley, Amber; Safa, Ahmad; Vasko, Michael R.Toxoplasma gondii is an important human pathogen that infects millions of people worldwide and causing severe and potentially lethal disease in immunocompromised individuals. Recently, a homologue for the autophagy protein Atg8 (TgAtg8) was identified in Toxoplasma that is required for both canonical and noncanonical processes essential for parasite viability. Importantly, TgAtg8 functionality requires its conjugation to phosphatidylethanolamine through the activity of the Atg8 conjugation system. In this thesis, we characterized the proteins that interact with TgAtg8 and TgAtg3, a component of the Atg8 conjugation system, to further define their functions in Toxoplasma and identify opportunities for targeted inhibition of Atg8-related processes. We previously identified that TgAtg8 is acetylated at lysine 23 (K23) and assessed the role of this modification in this thesis. Using mutagenesis, we showed that K23 acetylation did not modulate the interaction with TgAtg3, but appeared to promote TgAtg8 protein stability. Additionally, endogenous mutation of K23 to the nonacetylatable amino acid arginine resulted in severe impairment of parasite replication and spontaneous differentiation into bradyzoites. To gain insight into the role of TgAtg8 in Toxoplasma biology, we next characterized TgAtg8 and TgAtg3 interacting proteins using affinity purification and mass spectrometry. We identified a novel group of interacting proteins that are unique to Toxoplasma, including the dynamin-related protein DrpC. Functional characterization of DrpC identified a potential role of TgAtg8 in trafficking of membrane from the Golgi to the nascent daughter parasites during replication. Lastly, we examined a group of small molecules recently identified as Atg3-Atg8 inhibitors in Plasmodium falciparum and assessed their activity against Toxoplasma. Although the compounds effectively inhibited Toxoplasma replication, they did so through novel mechanisms of action unrelated to the disruption of the TgAtg3-Atg8 interaction. Together, this work provides insight into the function of the Atg8 conjugation system in Toxoplasma that will help guide the future development of novel therapeutics targeting Atg8-related processes.Item Characterizing the Unfolded Protein Response by Changes in Protein Thermal Stability(2023-09) McCracken, Neil Andrew; Mosley, Amber; Wek, Ron; Evans-Molina, Carmella; Georgiadis, Millie; Quinney, SaraThe Unfolded Protein Response (UPR) protects eukaryotic cells from the threat of excessive protein flux into the Endoplasmic Reticulum (ER). UPR sentries PERK, Ire1 and ATF6 detect unfolded protein in the ER and alert the cell of the condition. Downstream pathways increase translation of select responders while simultaneously decreasing the global protein load in order that toxic protein aggregates do not form in the cell. While this warning system has been characterized over several decades through extensive reporting of UPR impact on transcript and protein abundance, little is known about the biophysical changes that occur to proteins as part of the UPR in the context of the cellular environment. An understanding of how the UPR affects the folding, stability and protein oligomerization is vital for describing subtle but important changes that occur and contribute to maladaptive physiology in diseases including diabetes, cancer, and neurodegeneration. I propose that deficiencies in characterizing the UPR can be overcome by using thermal shifts assays (TSA) that quantify changes in protein stability post stimuli. Findings described herein show the utility of the biophysical thermal shift assay in characterizing the UPR. Thermal shift assays (TSA) measure susceptibility of proteins to denature upon heat treatment and consequently detect changes in protein structure, modification, and interactions in the cellular environment. Previously unobserved protein relationships related to the UPR were detected using TSA. These workflows were improved through more strategic upstream sampling and downstream data analysis through creation of the publicly available InflectSSP program. Observed UPR phenomena during N-linked glycosylation inhibition and UPR induction include protein degradation, changes in stability of N-linked glycosylation enzymes, and transcriptional targets canonical to the UPR. Stability changes in proteins downstream of PERK were also observed in experiments where PERK genetic ablation was combined with UPR induction. Finally, the thermal shift assay was used to develop a “signature” for the UPR that holistically describes the ER stress response. Results described in this dissertation provide an improved perspective of the UPR along with an approach that can be used to identify novel targets for therapeutic intervention of the UPR.Item classCleaner: A Quantitative Method for Validating Peptide Identification in LC-MS/MS Workflows(2020-05) Key, Melissa Chester; Boukai, Benzion; Ragg, Susanne; Katz, Barry; Mosley, AmberBecause label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomics infers the peptide sequence of each measurement, there is inherent uncertainty in the identity of each peptide and its originating protein. Removing misidentified peptides can improve the accuracy and power of downstream analyses when differences between proteins are of primary interest. In this dissertation I present classCleaner, a novel algorithm designed to identify misidentified peptides from each protein using the available quantitative data. The algorithm is based on the idea that distances between peptides belonging to the same protein are stochastically smaller than those between peptides in different proteins. The method first determines a threshold based on the estimated distribution of these two groups of distances. This is used to create a decision rule for each peptide based on counting the number of within-protein distances smaller than the threshold. Using simulated data, I show that classCleaner always reduces the proportion of misidentified peptides, with better results for larger proteins (by number of constituent peptides), smaller inherent misidentification rates, and larger sample sizes. ClassCleaner is also applied to a LC-MS/MS proteomics data set and the Congressional Voting Records data set from the UCI machine learning repository. The later is used to demonstrate that the algorithm is not specific to proteomics.Item The Contribution of Pdx1-Bound Chromatin Remodelers in Controlling β-Cell Differentiation and Function(2022-12) Davidson, Rebecca Kelly; Spaeth, Jason; Evans-Molina, Carmella; Mosley, Amber; Mastracci, Teresa; Balakrishnan, LataUnderstanding β-cell development and function is essential for generating more effective treatment options for individuals with diabetes. A key player in pancreatogenesis, islet development, and mature β-cell function is the Pdx1 transcription factor (TF). Pdx1 activity is modulated through interactions with various coregulators, including the Swi/Snf chromatin remodeling and Nucleosome Remodeling and Deacetylase (NuRD) complexes. Loss of one Swi/Snf ATPase subunit, Brg1, in early pancreatogenesis reduces final pancreas mass, and β-cell-specific deletion of both subunits, Brg1 and Brm, leads to glucose intolerance and loss of insulin production in the β-cell. Here, we hypothesized Swi/Snf governs endocrine progenitor cell development and postnatal islet function. To test this, we generated conditional murine knockouts of Brg1 (Brg1Δendo;Brm+/-), Brm (Brg1Δendo/+;Brm-/-), or both subunits (DKOΔendo) during endocrine cell development. No DKOΔendo mice were recovered at weaning, and loss of Brg1 but not Brm led to severe glucose intolerance, ad-lib fed hyperglycemia, and reduced insulin levels by four weeks of age. Brg1Δendo;Brm+/- mice had fewer islets and compromised insulin secretion. Together, these data suggest that loss of Brg1 during endocrine cell development has negative impacts on postnatal islet function, with loss of both Brg1 and Brm being early postnatal lethal. Pdx1 has been shown to also interact with the Chd4 helicase subunit of the NuRD complex. Here, we demonstrate Pdx1:Chd4 interactions are increased under stimulatory conditions and hypothesize that Chd4 modulates expression of Pdx1-bound genes critical for β-cell function. To test this, we generated a tamoxifen inducible, β-cell-specific Chd4 knockout mouse model (Chd4Δβ). Four weeks following Chd4 removal, Chd4Δβ mutants were glucose intolerant with severe insulin secretion defects. Additionally, Chd4Δβ islets contained fewer mature insulin granules and secreted more proinsulin. RNA-sequencing from Chd4Δβ β-cells identified numerous upregulated (eg Hk2, Mycl) and downregulated genes (eg MafA, Chga, Chgb, Slc2a2). Through ATAC-sequencing, we discovered several differentially accessible genomic regions, including Chd4-bound and Pdx1-controlled MafA Region 3, which had reduced accessibility in Chd4Δβ β-cells. Lastly, we demonstrate that CHD4 impacts human β-cell function and PDX1:CHD4 interactions were reduced in human donor β-cells with type 2 diabetes, demonstrating loss of these interactions is a significant feature of diabetes pathogenesis.Item The impact of the termination override mutation on the activity of SSU72(2016-12-19) McCracken, Neil Andrew; Mosley, Amber; Wek, Ronald; Goebl, MarkSsu72, an RNA Pol II CTD phosphatase that is conserved across eukaryotes, has been reported to have a wide array of genetic and physical associations with transcription factors and complexes in RNA transcription. Catalytic mutants of Ssu72 are lethal across many eukaryotes, and mutations to non-catalytic sites in SSU72 phosphatase have been shown to lower function. One spontaneous mutation of the SSU72 gene in Saccharomyces cerevisiae (A to C nucleotide mutation resulting in an L84F mutation in the coded protein) was shown to have transcription termination deficiency (termination override or TOV). This SSU72 mutation was suggested by Loya et al. to cause a lowering of the phosphatase activity of the protein and consequently affect proper termination. In research reported herein, an investigation was completed through in-vitro and ex-vivo approaches with the goal of understanding the impact of the SSU72 TOV mutation on the observed phenotype in S. cerevisiae. It can be concluded from work presented in this report that the SSU72 TOV mutation does not cause a decrease in in-vitro phosphatase activity as compared to wild type. Evidence presented even suggests an increase in phosphatase activity as compared to wild type Ssu72. One model for the observed responses in transcription termination is that the phenylalanine substitution in Ssu72 leads to cooperative interactions with proline residues in the CTD. It is proposed that the corresponding increase in Ssu72 phosphatase activity limits RNA Pol II CTD association with termination factors, such as Nrd1, thus causing deficient transcription termination.Item Investigations into the function of Elp3 in Toxoplasma gondii(2017-05-04) Padgett, Leah Rausch; Arrizabalaga, Gustavo; Jerde, Travis; Mosley, Amber; Nass, Richard M.; Sullivan, William J., Jr.The parasite Toxoplasma gondii causes life-threatening infection in immunocompromised individuals. Our lab has determined that Toxoplasma Elongator protein-3 (TgElp3) is required for parasite viability. While catalytic domains are conserved, TgElp3 is the only component of the six-subunit Elongator complex present in Toxoplasma; moreover, TgElp3 localizes to the outer mitochondria membrane (OMM). These unusual features suggest that TgElp3 may have unique roles in parasite biology that could be useful in drug targeting. The goals of this thesis were to determine the function of TgElp3 and how the protein traffics to the OMM. In other species, Elp3 mediates lysine acetylation of histones and alphatubulin, and its radical S-adenosyl methionine (rSAM) domain is important for the formation of tRNA modifications, which enhance translation efficiency and fidelity. Given its location, histones would not be an expected substrate, and we further determined that tubulin acetylation in Toxoplasma is mediated by a different enzyme, TgATAT. We found that overexpression of TgElp3 at the parasite’s mitochondrion results in a significant replication defect, but overexpression of TgElp3 lacking the transmembrane domain (TMD) or with a mutant rSAM domain is tolerated. We identified one such modification, 5-methoxycarbonylmethyl-2thiouridine (mcm5S2U) that is likely mediated by TgElp3. These findings signify the importance of TgElp3’s rSAM domain for protein function, and confirms TgElp3 activity at the OMM is essential for Toxoplasma viability as previously reported. To determine how TgElp3 traffics to the OMM, we performed a bioinformatics survey that discovered over 50 additional “tail-anchored” proteins present in Toxoplasma. Mutational analyses found that targeting of these TA proteins to specific parasite organelles was strongly influenced by the TMD sequence, including charge of the flanking C-terminal sequence.Item miR-21 Exacerbates Cytokine Induced Beta Cell Dysfunction via Inhibition of mRNAs Regulating Beta Cell Identity(2020-05) Ibrahim, Sara Mohommad; Sims, Emily K.; Mirmira, Raghu; Benson, Eric; Liu, Yunlong; Mosley, AmberA hallmark of diabetes is the loss of physical or functional Beta (β) cell mass. Maladaptive intrinsic β cell responses to islet inflammatory stress may exacerbate diabetes development, suggesting that β cells themselves may not be innocent bystanders in diabetes development. MicroRNAs (miRNAs), small RNAs that repress mRNA translation, serve as important regulators of β cell development and function. β cell microRNA 21 (miR-21) is increased in models of diabetes and I have identified Hypoxia Inducible Factor 1 Subunit Alpha (Hif1a) as a regulator of β cell miR-21. However, β cell effects of miR-21, remain poorly defined. To define the effects of miR-21, an in silico analysis of predictive targets of miR-21 identified multiple targets associated with maintenance of β cell identity, including the SMAD Family Member 2 (Smad2) mRNAs in the Transforming Growth Factor Beta 2 (Tgfb2) pathway. Based on this, I hypothesized that β cell miR-21 induces dysfunction via loss of β cell identity. To test this, I developed a tetracycline-on system of miR-21 induction in clonal β cells and human islets, as well as novel transgenic zebrafish and mouse models of inducible β cell specific miR-21 overexpression. β cell miR-21 induction increased aldehyde dehydrogenase (aldh1a3), but reduced expression of transcription factors associated with β cell identity, and glucose stimulated insulin secretion (GSIS), consistent with β cell dedifferentiation and dysfunction. Predicted targets Tgfb2 and Smad2 were reduced by miR-21 overexpression and confirmed to directly bind miR-21 using streptavidin-biotin pulldown. In vivo models of β cell miR-21 induction exhibited hyperglycemia, increased glucagon expression, and decreased insulin expression. These findings implicate miR-21- mediated reduction of mRNAs regulating β cell identity as a contributor to β cell dedifferentiation and dysfunction during islet inflammatory stress.Item Multiomics analysis reveals the mechanical stress-dependent changes in trabecular meshwork cytoskeletal-extracellular matrix interactions(Frontiers, 2022-09) Soundararajan, Avinash; Wang, Ting; Sundararajan, Rekha; Wijeratne, Aruna; Mosley, Amber; Harvey, Faith Christine; Bhattacharya, Sanjoy; Pattabiraman, Padmanabhan Paranji; Ophthalmology, School of MedicineTrabecular meshwork (TM) tissue is subjected to constant mechanical stress due to the ocular pulse created by the cardiac cycle. This brings about alterations in the membrane lipids and associated cell–cell adhesion and cell–extracellular matrix (ECM) interactions, triggering intracellular signaling responses to counter mechanical insults. A loss of such response can lead to elevated intraocular pressure (IOP), a major risk factor for primary open-angle glaucoma. This study is aimed to understand the changes in signaling responses by TM subjected to mechanical stretch. We utilized multiomics to perform an unbiased mRNA sequencing to identify changes in transcripts, mass spectrometry- (MS-) based quantitative proteomics for protein changes, and multiple reaction monitoring (MRM) profiling-based MS and high-performance liquid chromatography (HPLC-) based MS to characterize the lipid changes. We performed pathway analysis to obtain an integrated map of TM response to mechanical stretch. The human TM cells subjected to mechanical stretch demonstrated an upregulation of protein quality control, oxidative damage response, pro-autophagic signal, induction of anti-apoptotic, and survival signaling. We propose that mechanical stretch-induced lipid signaling via increased ceramide and sphingomyelin potentially contributes to increased TM stiffness through actin-cytoskeleton reorganization and profibrotic response. Interestingly, increased phospholipids and diacylglycerol due to mechanical stretch potentially enable cell membrane remodeling and changes in signaling pathways to alter cellular contractility. Overall, we propose the mechanistic interplay of macromolecules to bring about a concerted cellular response in TM cells to achieve mechanotransduction and IOP regulation when TM cells undergo mechanical stretch.Item Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS(Nature Publishing Group, 2020-09-21) Wu, Xue; Niculite, Cristina M.; Preda, Mihai Bogdan; Rossi, Annalisa; Tebaldi, Toma; Butoi, Elena; White, Mattie K.; Tudoran, Oana M.; Petrusca, Daniela N.; Jannasch, Amber S.; Bone, William P.; Zong, Xingyue; Fang, Fang; Burlacu, Alexandrina; Paulsen, Michelle T.; Hancock, Brad A.; Sandusky, George E.; Mitra, Sumegha; Fishel, Melissa L.; Buechlein, Aaron; Ivan, Cristina; Oikonomopoulos, Spyros; Gorospe, Myriam; Mosley, Amber; Radovich, Milan; Davé, Utpal P.; Ragoussis, Jiannis; Nephew, Kenneth P.; Mari, Bernard; McIntyre, Alan; Konig, Heiko; Ljungman, Mats; Cousminer, Diana L.; Macchi, Paolo; Ivan, Mircea; Medicine, School of MedicineWe hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance.