- Browse by Author
Browsing by Author "Mosey, Aaron"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Controlled short time large scale synthesis of magnetic cobalt nanoparticles on carbon nanotubes by flash annealing(AIP, 2020) Mosey, Aaron; Yue, Lanping; Gaire, Babu; Ryu, Jong Eun; Cheng, Ruihua; Physics, School of ScienceNanopatterned arrays of discrete cobalt nanostructures showing characteristic parameter-dependent sizes are formed from continuous thin films on a carbon nanotube substrate using millisecond pulsed intense UV light. The nanoparticles exhibit ferromagnetic behavior with magnetic remanence and coercivity depending on the particle size. The end-state particle size is shown to be a function of initial thin film thickness and excitation energy and is therefore tunable. The evolutionary process from continuous thin films to a discrete morphology is thermodynamically driven by the large surface energy difference between metastable thin films and the underlying carbon nanotube substrate. Evidence of the Danielson model of the dewetting process is observed. These arrays can find applications as platforms for the self-assembly of magnetically susceptible materials, such as iron or nickel nanostructures, into a conduction matrix for applications in energy extraction from a latent heat storage device.Item Electrochemical behavior of tin foil anode in half cell and full cell with sulfur cathode(Elsevier, 2019-01) Cui, Yi; Li, Tianyi; Zhou, Xinwei; Mosey, Aaron; Guo, Wei; Cheng, Ruihua; Fu, Yongzhu; Zhu, Likun; Mechanical Engineering, School of Engineering and TechnologyTin-based (Sn) metal anode has been considered an attractive candidate for rechargeable lithium batteries due to its high specific capacity, safety and low cost. However, the large volume change of Sn during cycling leads to rapid capacity decay. To address this issue, Sn foil was used as a high capacity anode by controlling the degree of lithium uptake. We studied the electrochemical behavior of Sn foil anode in half cell and full cell with sulfur cathode, including phase transform, morphological change, discharge/charge profiles and cycling performance. Enhanced cycling performance has been achieved by limiting the lithiation capacity of the Sn foil electrode. A full cell consisting of a pre-lithiated Sn foil anode and a sulfur cathode was constructed and tested. The full cell exhibits an initial capacity of 1142 mAh g−1 (based on the sulfur mass in the cathode), followed by stable cycling performance with a capacity retention of 550 mAh g−1 after 100 cycles at C/2 rate. This study reports a potential prospect to utilize Sn and S as a combination in rechargeable lithium batteries.Item Nonvolatile Voltage Controlled Molecular Spin-State Switching for Memory Applications(MDPI, 2021-03) Ekanayaka, Thilini K.; Hao, Guanhua; Mosey, Aaron; Dale, Ashley S.; Jiang, Xuanyuan; Yost, Andrew J.; Sapkota, Keshab R.; Wang, George T.; Zhang, Jian; N’Diaye, Alpha T.; Marshall, Andrew; Cheng, Ruihua; Naeemi, Azad; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of ScienceNonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon.Item Probing the unpaired Fe spins across the spin crossover of a coordination polymer(RSC, 2021) Ekanayaka, Thilini K.; Kurz, Hannah; Dale, Ashley S.; Hao, Guanhua; Mosey, Aaron; Mishra, Esha; N'Diaye, Alpha T.; Cheng, Ruihua; Weber, Birgit; Dowben, Peter A.; Physics, School of ScienceFor the spin crossover coordination polymer [Fe(L1)(bipy)]n (where L1 is a N2O22− coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4′-bipyridine), there is compelling additional evidence of a spin state transition. Both Fe 2p X-ray absorption and X-ray core level photoemission spectroscopies confirm that a spin crossover takes place, as observed by magnetometry. Yet the details of the temperature dependent changes of the spin state inferred from both X-ray absorption and X-ray core level photoemission, differ from magnetometry, particularly with regard to the apparent critical transition temperatures and the cooperative nature of the curve progression in general. Comparing the experimental spin crossover data to Ising model simulations, a transition activation energy in the region of 160 to 175 meV is indicated, along with a nonzero exchange J. Overall, the implication is that there may be perturbations to the bistability of spin states, that are measurement dependent or that the surface differs from the bulk with regard to the cooperative effects observed upon spin transition.Item Quantitative Study of the Energy Changes in Voltage-Controlled Spin Crossover Molecular Thin Films(ACS, 2020-09) Mosey, Aaron; Dale, Ashley S.; Hao, Guanhua; N'Diaye, Alpha; Dowben, Peter A.; Cheng, Ruihua; Physics, School of ScienceVoltage-controlled nonvolatile isothermal spin state switching of a [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1–1y)-borohydride, bipy = 2,2′-bipyridine) film, more than 40 to 50 molecular layers thick, is possible when it is adsorbed onto a molecular ferroelectric substrate. Accompanying this high-spin and low-spin state switching, at room temperature, we observe a remarkable change in conductance, thereby allowing not only nonvolatile voltage control of the spin state (“write”) but also current sensing of the molecular spin state (“read”). Monte Carlo Ising model simulations of the high-spin state occupancy, extracted from X-ray absorption spectroscopy, indicate that the energy difference between the low-spin and high-spin state is modified by 110 meV. Transport measurements demonstrate that four terminal voltage-controlled devices can be realized using this system.Item Tunable cobalt nanoparticle synthesis by intense pulse flash annealing(AIP, 2017-01) Mosey, Aaron; Gaire, Babu; Kim, Jeongwhan; Ryu, Jong Eun; Cheng, Ruihua; Department of Physics, School of ScienceMagnetically susceptible materials can serve as a basis for the directed assembly of nanoscale network devices which can be used to extract energy from phase change materials. So far, matrix production cost has been a prohibitive factor in the realization of real world applications. Here we report a cost-effective method to synthesize magnetic nanoparticles. Samples were fabricated by sputtering magnetic thin films on carbon nanotube substrates followed by xenon intense pulsed light flash annealing. The results indicate that spatially ordered magnetic spheres can be tuned by various parameters such as initial thin film thickness, xenon lamp exposure excitation energy, local surface geometries, and the presence of an external magnetic field during annealing.Item Tunable spin-state bistability in a spin crossover molecular complex(IOP, 2019) Jiang, Xuanyuan; Hao, Guanhua; Wang, Xiao; Mosey, Aaron; Zhang, Xin; Yu, Le; Yost, Andrew J.; Zhang, Xin; DiChiara, Anthony D.; N'Diaye, Alpha T.; Cheng, Xuemei; Zhang, Jian; Cheng, Ruihua; Xu, Xiaoshan; Dowben, Peter A.; Physics, School of SciencesThe spin crossover (SCO) transitions at both the surface and over the entire volume of the [Fe{H2B(pz)2}2(bipy)] polycrystalline films on Al2O3 substrates have been studied, where pz = pyrazol-1-yl and bipy = 2,2'-bipyridine. For [Fe{H2B(pz)2}2(bipy)] films of hundreds of nm thick, magnetometry and x-ray absorption spectroscopy measurements show thermal hysteresis in the SCO transition with temperature, although the transition in bulk [Fe{H2B(pz)2}2(bipy)] occurs in a non-hysteretic fashion at 157 K. While the size of the crystallites in those films are similar, the hysteresis becomes more prominent in thinner films, indicating a significant effect of the [Fe{H2B(pz)2}2(bipy)]/Al2O3 interface. Bistability of spin states, which can be inferred from the thermal hysteresis, was directly observed using temperature-dependent x-ray diffraction; the crystallites behave as spin-state domains that coexist during the transition. The difference between the spin state of molecules at the surface of the [Fe{H2B(pz)2}2(bipy)] films and that of the molecules within the films, during the thermal cycle, indicates that both cooperative (intermolecular) effects and coordination are implicated in perturbations to the SCO transition.Item Voltage Controlled Non-Volatile Spin State and Conductance Switching of a Molecular Thin Film Heterostructure(2021-05) Mosey, Aaron; Cheng, Ruihua; Joglekar, Yogesh; Decca, Ricardo; Vermuri, Gautum; Csathy, GaborThermal constraints and the quantum limit will soon put a boundary on the scale of new micro and nano magnetoelectronic devices. This necessitates a push into the limits of harnessable natural phenomena to facilitate a post-Moore’s era of design. Requirements for thermodynamic stability at room temperature, fast (Ghz) switching, and low energy cost narrow the list of candidates. Here we show voltage controllable, room temperature, stable locking of the spin state, and the corresponding conductivity change, when molecular spin crossover thin films are deposited on a ferroelectric substrate. This opens the door to the creation of a non-volatile, room temperature, molecular multiferroic gated voltage controlled device.