- Browse by Author
Browsing by Author "Morrison, Rachel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Assessing brain volume changes in older women with breast cancer receiving adjuvant chemotherapy: a brain magnetic resonance imaging pilot study(BMC, 2018-05-02) Chen, Bihong T.; Sethi, Sean K.; Jin, Taihao; Patel, Sunita K.; Ye, Ningrong; Sun, Can-Lan; Rockne, Russell C.; Haacke, E. Mark; Root, James C.; Saykin, Andrew J.; Ahles, Tim A.; Holodny, Andrei I.; Prakash, Neal; Mortimer, Joanne; Waisman, James; Yuan, Yuan; Somlo, George; Li, Daneng; Yang, Richard; Tan, Heidi; Katheria, Vani; Morrison, Rachel; Hurria, Arti; Medicine, School of MedicineBACKGROUND: Cognitive decline is among the most feared treatment-related outcomes of older adults with cancer. The majority of older patients with breast cancer self-report cognitive problems during and after chemotherapy. Prior neuroimaging research has been performed mostly in younger patients with cancer. The purpose of this study was to evaluate longitudinal changes in brain volumes and cognition in older women with breast cancer receiving adjuvant chemotherapy. METHODS: Women aged ≥ 60 years with stage I-III breast cancer receiving adjuvant chemotherapy and age-matched and sex-matched healthy controls were enrolled. All participants underwent neuropsychological testing with the US National Institutes of Health (NIH) Toolbox for Cognition and brain magnetic resonance imaging (MRI) prior to chemotherapy, and again around one month after the last infusion of chemotherapy. Brain volumes were measured using Neuroreader™ software. Longitudinal changes in brain volumes and neuropsychological scores were analyzed utilizing linear mixed models. RESULTS: A total of 16 patients with breast cancer (mean age 67.0, SD 5.39 years) and 14 age-matched and sex-matched healthy controls (mean age 67.8, SD 5.24 years) were included: 7 patients received docetaxel and cyclophosphamide (TC) and 9 received chemotherapy regimens other than TC (non-TC). There were no significant differences in segmented brain volumes between the healthy control group and the chemotherapy group pre-chemotherapy (p > 0.05). Exploratory hypothesis generating analyses focusing on the effect of the chemotherapy regimen demonstrated that the TC group had greater volume reduction in the temporal lobe (change = - 0.26) compared to the non-TC group (change = 0.04, p for interaction = 0.02) and healthy controls (change = 0.08, p for interaction = 0.004). Similarly, the TC group had a decrease in oral reading recognition scores (change = - 6.94) compared to the non-TC group (change = - 1.21, p for interaction = 0.07) and healthy controls (change = 0.09, p for interaction = 0.02). CONCLUSIONS: There were no significant differences in segmented brain volumes between the healthy control group and the chemotherapy group; however, exploratory analyses demonstrated a reduction in both temporal lobe volume and oral reading recognition scores among patients on the TC regimen. These results suggest that different chemotherapy regimens may have differential effects on brain volume and cognition. Future, larger studies focusing on older adults with cancer on different treatment regimens are needed to confirm these findings.Item Subcortical brain iron deposition and cognitive performance in older women with breast cancer receiving adjuvant chemotherapy: A pilot MRI study(Elsevier, 2018-12) Chen, Bihong T.; Ghassaban, Kiarash; Jin, Taihao; Patel, Sunita K.; Ye, Ningrong; Sun, Can-Lan; Kim, Heeyoung; Rockne, Russell C.; Haacke, E. Mark; Root, James C.; Saykin, Andrew J.; Ahles, Tim A.; Holodny, Andrei I.; Prakash, Neal; Mortimer, Joanne; Waisman, James; Yuan, Yuan; Somlo, George; Li, Daneng; Yang, Daneng; Yang, Richard; Tan, Heidi; Katheria, Vani; Morrison, Rachel; Hurria, Arti; Radiology and Imaging Sciences, School of MedicineAs the number of older adults in the U.S. increases, so too will the incidence of cancer and cancer-related cognitive impairment (CRCI). However, the exact underlying biological mechanism for CRCI is not yet well understood. We utilized susceptibility-weighted imaging with quantitative susceptibility mapping, a non-invasive MRI-based technique, to assess longitudinal iron deposition in subcortical gray matter structures and evaluate its association with cognitive performance in women age 60+ with breast cancer receiving adjuvant chemotherapy and age-matched women without breast cancer as controls. Brain MRI scans and neurocognitive scores from the NIH Toolbox for Cognition were obtained before chemotherapy (time point 1) and within one month after the last infusion of chemotherapy for the patients and at matched intervals for the controls (time point 2). There were 14 patients age 60+ with breast cancer (mean age 66.3 ± 5.3 years) and 13 controls (mean age 68.2 ± 6.1 years) included in this study. Brain iron increased as age increased. There were no significant between- or within- group differences in neurocognitive scores or iron deposition at time point 1 or between time points 1 and 2 (p > 0.01). However, there was a negative correlation between iron in the globus pallidus and the fluid cognition composite scores in the control group at time point 1 (r = −0.71; p < 0.01), but not in the chemotherapy group. Baseline iron in the putamen was negatively associated with changes in the oral reading recognition scores in the control group (r = 0.74, p < 0.01), but not in the chemotherapy group. Brain iron assessment did not indicate cancer or chemotherapy related short-term differences, yet some associations with cognition were observed. Studies with larger samples and longer follow-up intervals are warranted.