- Browse by Author
Browsing by Author "Morris, Ashlyn J."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Cracking the Code: The Role of Peripheral Nervous System Signaling in Fracture Repair(Springer, 2024) Morris, Ashlyn J.; Parker, Reginald S.; Nazzal, Murad K.; Natoli, Roman M.; Fehrenbacher, Jill C.; Kacena, Melissa A.; White, Fletcher A.; Orthopaedic Surgery, School of MedicinePurpose of review: The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling. Recent findings: Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympathectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, marking an important area for further investigation. The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.Item Do Not Lose Your Nerve, Be Callus: Insights Into Neural Regulation of Fracture Healing(Springer, 2024) Nazzal, Murad K.; Morris, Ashlyn J.; Parker, Reginald S.; White, Fletcher A.; Natoli, Roman M.; Kacena, Melissa A.; Fehrenbacher, Jill C.; Orthopaedic Surgery, School of MedicinePurpose of review: Fractures are a prominent form of traumatic injury and shall continue to be for the foreseeable future. While the inflammatory response and the cells of the bone marrow microenvironment play significant roles in fracture healing, the nervous system is also an important player in regulating bone healing. Recent findings: Considerable evidence demonstrates a role for nervous system regulation of fracture healing in a setting of traumatic injury to the brain. Although many of the impacts of the nervous system on fracture healing are positive, pain mediated by the nervous system can have detrimental effects on mobilization and quality of life. Understanding the role the nervous system plays in fracture healing is vital to understanding fracture healing as a whole and improving quality of life post-injury. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.Item Role of the Neurologic System in Fracture Healing: An Extensive Review(Springer, 2024) Parker, Reginald S.; Nazzal, Murad K.; Morris, Ashlyn J.; Fehrenbacher, Jill C.; White, Fletcher A.; Kacena, Melissa A.; Natoli, Roman M.; Orthopaedic Surgery, School of MedicinePurpose of review: Despite advances in orthopedics, there remains a need for therapeutics to hasten fracture healing. However, little focus is given to the role the nervous system plays in regulating fracture healing. This paucity of information has led to an incomplete understanding of fracture healing and has limited the development of fracture therapies that integrate the importance of the nervous system. This review seeks to illuminate the integral roles that the nervous system plays in fracture healing. Recent findings: Preclinical studies explored several methodologies for ablating peripheral nerves to demonstrate ablation-induced deficits in fracture healing. Conversely, activation of peripheral nerves via the use of dorsal root ganglion electrical stimulation enhanced fracture healing via calcitonin gene related peptide (CGRP). Investigations into TLR-4, TrkB agonists, and nerve growth factor (NGF) expression provide valuable insights into molecular pathways influencing bone mesenchymal stem cells and fracture repair. Finally, there is continued research into the connections between pain and fracture healing with findings suggesting that anti-NGF may be able to block pain without affecting healing. This review underscores the critical roles of the central nervous system (CNS), peripheral nervous system (PNS), and autonomic nervous system (ANS) in fracture healing, emphasizing their influence on bone cells, neuropeptide release, and endochondral ossification. The use of TBI models contributes to understanding neural regulation, though the complex influence of TBI on fracture healing requires further exploration. The review concludes by addressing the neural connection to fracture pain. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.Item Using AI to Write a Review Article Examining the Role of the Nervous System on Skeletal Homeostasis and Fracture Healing(Springer, 2024) Nazzal, Murad K.; Morris, Ashlyn J.; Parker, Reginald S.; White, Fletcher A.; Natoli, Roman M.; Fehrenbacher, Jill C.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicinePurpose of review: Three review articles have been written that discuss the roles of the central and peripheral nervous systems in fracture healing. While content among the articles is overlapping, there is a key difference between them: the use of artificial intelligence (AI). In one paper, the first draft was written solely by humans. In the second paper, the first draft was written solely by AI using ChatGPT 4.0 (AI-only or AIO). In the third paper, the first draft was written using ChatGPT 4.0 but the literature references were supplied from the human-written paper (AI-assisted or AIA). This project was done to evaluate the capacity of AI to conduct scientific writing. Importantly, all manuscripts were fact checked and extensively edited by all co-authors rendering the final manuscript drafts significantly different from the first drafts. Recent findings: Unsurprisingly, the use of AI decreased the time spent to write a review. The two AI-written reviews took less time to write than the human-written paper; however, the changes and editing required in all three manuscripts were extensive. The human-written paper was edited the most. On the other hand, the AI-only paper was the most inaccurate with inappropriate reference usage and the AI-assisted paper had the greatest incidence of plagiarism. These findings show that each style of writing presents its own unique set of challenges and advantages. While AI can theoretically write scientific reviews, from these findings, the extent of editing done subsequently, the inaccuracy of the claims it makes, and the plagiarism by AI are all factors to be considered and a primary reason why it may be several years into the future before AI can present itself as a viable alternative for traditional scientific writing.