- Browse by Author
Browsing by Author "Morozova, Ekaterina O."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting(APS Journals, 2016-10-01) Morozova, Ekaterina O.; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C.; Kuznetsov, Alexey; Mathematical Sciences, School of SciencePresented herein ventral tegmental area microcircuit model challenges the classical view that GABA neurons exclusively reduce dopamine neuron firing and bursting. Rather, high levels of synchrony amongst GABA neurons can produce increases in firing and bursting of the dopamine neuron. Dopamine bursting can be produced in the absence of bursty excitatory input, if the neuron receives transiently synchronized GABA input. We provide an explanation of the mechanisms whereby GABA neurons could contribute to dopamine neuron burst firing., In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally.Item Dynamical ventral tegmental area circuit mechanisms of alcohol‐dependent dopamine release(Wiley, 2019) di Volo, Matteo; Morozova, Ekaterina O.; Lapish, Christopher C.; Kuznetsov, Alexey; Gutkin, Boris; Psychology, School of ScienceA large body of data has identified numerous molecular targets through which ethanol (EtOH) acts on brain circuits. Yet how these multiple mechanisms interact to result in dysregulated dopamine (DA) release under the influence of alcohol in vivo remains unclear. In this manuscript, we delineate potential circuit‐level mechanisms responsible for EtOH‐dependent dysregulation of DA release from the ventral tegmental area (VTA) into its projection areas. For this purpose, we constructed a circuit model of the VTA that integrates realistic Glutamatergic (Glu) inputs and reproduces DA release observed experimentally. We modelled the concentration‐dependent effects of EtOH on its principal VTA targets. We calibrated the model to reproduce the inverted U‐shape dose dependence of DA neuron activity on EtOH concentration. The model suggests a primary role of EtOH‐induced boost in the Ih and AMPA currents in the DA firing‐rate/bursting increase. This is counteracted by potentiated GABA transmission that decreases DA neuron activity at higher EtOH concentrations. Thus, the model connects well‐established in vitro pharmacological EtOH targets with its in vivo influence on neuronal activity. Furthermore, we predict that increases in VTA activity produced by moderate EtOH doses require partial synchrony and relatively low rates of the Glu afferents. We propose that the increased frequency of transient (phasic) DA peaks evoked by EtOH results from synchronous population bursts in VTA DA neurons. Our model predicts that the impact of acute ETOH on dopamine release is critically shaped by the structure of the cortical inputs to the VTA.