ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Morgan, Nathaniel"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    GNRFET-Based DC-DC Converters for Low Power Data Management in ULSI System, a Feasibility Study
    (IEEE, 2021) Mekhael, George; Morgan, Nathaniel; Patnala, Mounica; Ytterdal, Trond; Rizkalla, Maher; Electrical and Computer Engineering, School of Engineering and Technology
    Low power data management is an approach that distribute the supply power on the various modules in the chip, following certain algorithms such as dynamic voltage sharing (DVS), single input multiple data (SIMD) among others with a coil-less circuit design. The key factors for reducing the power and enhancing the efficiency is attributed to the lower feeding power supply, high device mobility for low power consumption, the device size, and the architecture used in the design. Graphene Nano Ribbon Field Effect Transistors (GNRFET) based Buck and Boost converters were designed for single input/multiple outputs conversion. The design features very high efficiency that exceeds 90% at very high frequencies. The input was 0.7V with outputs of 0.35V and 1.4V for buck and boost converters respectively. The design gains from the high mobility feature of the nano scale GNRFET devices, and the low supply power applied to the various modules in the chip. A 10nm scale channel device with 4 ribbons were considered, and the switch capacitor (SC) approach was utilized. The study of the transient analysis, the static power, dynamic power, and ripple voltages at different design constraints were investigated versus the conversion parameters including the frequency, load, and duty cycles. The efficiency at a high load was estimated to be near 97%, while at low load and lower switching frequencies, the efficiency was estimated to be near 85%.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University