- Browse by Author
Browsing by Author "Moreno-Madrinan, Max J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A semi-analytical model for estimating total suspended matter in highly turbid waters(Optical Society of America, 2018-12-24) Zhang, Yibo; Shi, Kun; Zhang, Yunlin; Moreno-Madrinan, Max J.; Li, Yuan; Li, Na; Environmental Health Science, School of Public HealthTotal suspended matter (TSM) is related to water quality. High TSM concentrations limit underwater light availability, thus affecting the primary productivity of aquatic ecosystems. Accurate estimation of TSM concentrations in various waters with remote sensing technology is particularly challenging, as the concentrations and optical properties vary greatly among different waters. In this research, a semi-analytical model was established for Hangzhou Bay and Lake Taihu for estimating TSM concentration. The model construction proceeded in two steps. 1) Two indices of the model were calculated by deriving absorption and backscattering coefficients of suspended matter (ap(λ) and bbp(λ)) from the reflectance signal using a semi-analytical method. 2) The two indices were then weighted to derive TSM. The performance of the proposed model was tested using in situ reflectance and Geostationary Ocean Color Imager (GOCI) data. The derived TSM based on in situ reflectance and GOCI images both corresponded well with the in situ TSM with low mean relative error (32%, 41%), root mean square error (20.1 mg/L, 43.1 mg/L), and normalized root mean square error (33%, 55%). The model was further used for the slightly turbid Xin’anjiang Reservoir to demonstrate its applicability to derive ap(λ) and bbp(λ) in other water types. The results indicated that the form Rrs −1(λ1) − Rrs −1(λ2) could minimize the effect of CDOM absorption in deriving ap(λ) from the total absorption. The model exploited the different relationships between TSM concentration and multiband reflectance, thus improving the performance and application range in deriving TSM.Item Spatio-Temporal Variability in a Turbid and Dynamic Tidal Estuarine Environment (Tasmania, Australia): An Assessment of MODIS Band 1 Reflectance(MDPI, 2017-10-25) Fischer, Andrew M.; Pang, Daniel; Kidd, Ian M.; Moreno-Madrinan, Max J.; Environmental Health Sciences, School of Public HealthPatterns of turbidity in estuarine environments are linked to hydrodynamic processes. However, the linkage between patterns and processes remains poorly resolved due to the scarcity of data needed to resolve fine scale highly dynamic processes in tidal estuaries. The application of remote sensing technology to monitor dynamic coastal areas such as estuaries offers important advantages in this regard, by providing synoptic maps of larger, constantly changing regions over consistent periods. In situ turbidity measurements were correlated against the Moderate Resolution Imaging Spectrometer Terra sensor 250 m surface reflectance product, in order to assess this product for examining the complex estuarine waters of the Tamar estuary (Australia). Satellite images were averaged to examine spatial, seasonal and annual patterns of turbidity. Relationships between in situ measurements of turbidity and reflectance is positively correlated and improves with increased tidal height, a decreased overpass-in situ gap, and one day after a rainfall event. Spatial and seasonal patterns that appear in seasonal and annual MODIS averages, highlighting the usefulness of satellite imagery for resource managers to manage sedimentation issues in a degraded estuary.