- Browse by Author
Browsing by Author "Moreno-Madriñán, M. J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Climate change impacts on human health at an actionable scale: a state-level assessment of Indiana, USA(Springer, 2020-12) Filippelli, G. M.; Freeman, J. L.; Gibson, J.; Jay, S.; Moreno-Madriñán, M. J.; Ogashawara, I.; Rosenthal, F. S.; Wang, Y.; Wells, E.; Earth Sciences, School of ScienceClimate change is already being felt on local levels, with historical records from the State of Indiana (USA) revealing warmer winters and more extreme precipitation events. To refine our understanding of climate change impacts on human health, we conducted a state-level assessment of future climate change impacts on human health using outputs from advanced climate model projections for this century. Future projections show a steep increase in extreme heat events, leading to greater potential vulnerability to heat disasters for Indiana communities. Additionally, a 2- to 4-fold increase in days with “uncomfortable night” conditions by the end of the century will strongly impact the cardiopulmonary health of more vulnerable populations (i.e., elderly, those with pre-existing conditions, children, and those with inadequate access to cooling). Continued trends for warmer winters and more flooding suggest a much greater risk for the expansion and virulence of a number of vector-borne diseases, such as Lyme disease, West Nile Virus, and “tropical” diseases for which the mosquito vectors will thrive. Higher temperatures will also drive more frequent and severe harmful algal blooms in lakes and reservoirs, with implications for human and animal health. Food systems will also be impacted, particularly with increased risk of contamination by bacteria and mycotoxins due to elevated heat and humidity.Item Spatial‐Temporal Assessment of Environmental Factors Related to Dengue Outbreaks in São Paulo, Brazil(Wiley, 2019-08) Ogashawara, I.; Li, L.; Moreno-Madriñán, M. J.; Environmental Health Science, School of Public HealthDengue fever, a disease caused by a vector‐borne flavivirus, is endemic to tropical countries, but its occurrence has been reported worldwide. This study aimed to understand important factors contributing to the spatial and temporal patterns of dengue occurrence in São Paulo, the largest municipality of Brazil. The temporal assessment of dengue occurrence covered the 2011–2016 time period and was based on climatological data, such as the El Niño indices and time series statistical tools such as the continuous wavelet transformation. The spatial assessment used Landsat 8 data for years 2014–2016 to estimate land surface temperature and normalized indices for vegetation, urban areas, and leaf water. Results from a cross correlation for the temporal analysis found a relationship between the sea surface temperature anomalies index and the number of reported dengue cases in São Paulo (r = 0.5) with a lag of +29 (weeks) between the climatic event and the response on the dengue incidence. This relationship, initially nonlinear, became linear after correcting for the lag period. For the spatial assessment, the linear stepwise regression model detected a low relationship between dengue incidence and minimum surface temperature (r = 0.357) and no relationship with other environmental parameters. The poor relationship might be due to confounding effects of socioeconomic factors as these seem to influence the spatial dynamics of dengue incidence. More testing is needed to validate these methods in other locations. Nevertheless, we presented possible tools to be used for the improvement of dengue control programs.