- Browse by Author
Browsing by Author "Moran, Antoinette"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Cystic fibrosis related diabetes (CFRD) prognosis(Elsevier, 2021-11-19) Sandouk, Zahrae; Khan, Farah; Khare, Swapnil; Moran, Antoinette; Medicine, School of MedicineCystic fibrosis related diabetes (CFRD) occurs in at least 40-50% of adults with CF. With other forms of diabetes, microvascular and macrovascular disease are the major causes of morbidity and mortality. Macrovascular disease is rare in CF. While microvascular disease does occur in this population, there are CF-specific diabetes complications that have a more important impact on prognosis. The additional diagnosis of diabetes in CF is associated with decreased lung function, poor nutritional status, and an overall increase in mortality from lung disease. These negative findings start even before the clinical diagnosis of CFRD, during the period when patients experience abnormal glucose tolerance related to insulin insufficiency. The main mechanisms by which CFRD negatively affects prognosis are thought to be a combination of 1) protein catabolism, decreased lean body mass and undernutrition resulting from insulin insufficiency, and 2) an increased pro-inflammatory and pro-infectious state related to intermittent hyperglycemia. With the introduction of CFTR modulators, the care of CF patients has been revolutionized and many aspects of CF health such as BMI and lung function are improving. The impact of these drugs on the adverse prognosis related to the diagnosis of diabetes in CF, as well as the potential to delay or prevent onset of CFRD remain to be determined.Item Dysglycemia and Index60 as Prediagnostic End Points for Type 1 Diabetes Prevention Trials(American Diabetes Association, 2017-11) Nathan, Brandon M.; Boulware, David; Geyer, Susan; Atkinson, Mark A.; Colman, Peter; Goland, Robin; Russell, William; Wentworth, John M.; Wilson, Darrell M.; Evans-Molina, Carmella; Wherrett, Diane; Skyler, Jay S.; Moran, Antoinette; Sosenko, Jay M.; Type 1 Diabetes TrialNet and Diabetes Prevention Trial–Type 1 Study Groups; Medicine, School of MedicineOBJECTIVE: We assessed dysglycemia and a T1D Diagnostic Index60 (Index60) ≥1.00 (on the basis of fasting C-peptide, 60-min glucose, and 60-min C-peptide levels) as prediagnostic end points for type 1 diabetes among Type 1 Diabetes TrialNet Pathway to Prevention Study participants. RESEARCH DESIGN AND METHODS: Two cohorts were analyzed: 1) baseline normoglycemic oral glucose tolerance tests (OGTTs) with an incident dysglycemic OGTT and 2) baseline Index60 <1.00 OGTTs with an incident Index60 ≥1.00 OGTT. Incident dysglycemic OGTTs were divided into those with (DYS/IND+) and without (DYS/IND-) concomitant Index60 ≥1.00. Incident Index60 ≥1.00 OGTTs were divided into those with (IND/DYS+) and without (IND/DYS-) concomitant dysglycemia. RESULTS: The cumulative incidence for type 1 diabetes was greater after IND/DYS- than after DYS/IND- (P < 0.01). Within the normoglycemic cohort, the cumulative incidence of type 1 diabetes was higher after DYS/IND+ than after DYS/IND- (P < 0.001), whereas within the Index60 <1.00 cohort, the cumulative incidence after IND/DYS+ and after IND/DYS- did not differ significantly. Among nonprogressors, type 1 diabetes risk at the last OGTT was greater for IND/DYS- than for DYS/IND- (P < 0.001). Hazard ratios (HRs) of DYS/IND- with age and 30- to 0-min C-peptide were positive (P < 0.001 for both), whereas HRs of type 1 diabetes with these variables were inverse (P < 0.001 for both). In contrast, HRs of IND/DYS- and type 1 diabetes with age and 30- to 0-min C-peptide were consistent (all inverse [P < 0.01 for all]). CONCLUSIONS: The findings suggest that incident dysglycemia without Index60 ≥1.00 is a suboptimal prediagnostic end point for type 1 diabetes. Measures that include both glucose and C-peptide levels, such as Index60 ≥1.00, appear better suited as prediagnostic end points.Item Early Impairment of Insulin Sensitivity, β-Cell Responsiveness, and Insulin Clearance in Youth with Stage 1 Type 1 Diabetes(Oxford University Press, 2021) Galderisi, Alfonso; Moran, Antoinette; Evans-Molina, Carmella; Martino, Mariangela; Santoro, Nicola; Caprio, Sonia; Cobelli, Claudio; Pediatrics, School of MedicineContext: Clinical onset of type 1 diabetes (Stage 3 T1D) is preceded by a presymptomatic phase characterized by multiple islet autoantibodies with normal glucose tolerance (Stage 1 T1D). Objective: The aim was to explore the metabolic phenotypes of β-cell function and insulin sensitivity and clearance in normoglycemic youth with Stage 1 T1D and compare them with healthy nonrelated peers during a 3-hour oral glucose tolerance test (OGTT). Methods: Twenty-eight lean youth, 14 with ≥2 islet autoantibodies (cases) and 14 healthy controls underwent a 3-hour 9-point OGTT with measurement of glucose, C-peptide, and insulin. The oral minimal model was used to quantitate β-cell responsiveness (φtotal) and insulin sensitivity (SI), allowing assessment of β-cell function by the disposition index (DI=φtotal×SI). Fasting insulin clearance (CL0) was calculated as the ratio between the fasting insulin secretion rate (ISR) and plasma insulin levels (ISR0/I0), while postload clearance (CL180) was estimated by the ratio of AUC of ISR over the plasma insulin AUC for the 3-hour OGTT (ISRAUC/IAUC). Participants with impaired fasting glucose, impaired glucose tolerance, or any OGTT glucose concentration ≥200 mg/dL were excluded. Results: Cases (10.5 years [8, 15]) exhibited reduced DI (P < .001) due to a simultaneous reduction in both φtotal (P < 0.001) and SI (P = .008) compared with controls (11.5 years [10.4, 14.9]). CL0 and CL180 were lower in cases than in controls (P = .005 and P = .019). Conclusion: Presymptomatic Stage 1 T1D in youth is associated with reduced insulin sensitivity and lower β-cell responsiveness, and the presence of blunted insulin clearance.Item Effect of Tight Glycemic Control on Pancreatic Beta Cell Function in Newly Diagnosed Pediatric Type 1 Diabetes: A Randomized Clinical Trial(American Medical Association, 2023) McVean, Jennifer; Forlenza, Gregory P.; Beck, Roy W.; Bauza, Colleen; Bailey, Ryan; Buckingham, Bruce; DiMeglio, Linda A.; Sherr, Jennifer L.; Clements, Mark; Neyman, Anna; Evans-Molina, Carmella; Sims, Emily K.; Messer, Laurel H.; Ekhlaspour, Laya; McDonough, Ryan; Van Name, Michelle; Rojas, Diana; Beasley, Shannon; DuBose, Stephanie; Kollman, Craig; Moran, Antoinette; CLVer Study Group; Pediatrics, School of MedicineImportance: Near normalization of glucose levels instituted immediately after diagnosis of type 1 diabetes has been postulated to preserve pancreatic beta cell function by reducing glucotoxicity. Previous studies have been hampered by an inability to achieve tight glycemic goals. Objective: To determine the effectiveness of intensive diabetes management to achieve near normalization of glucose levels on preservation of pancreatic beta cell function in youth with newly diagnosed type 1 diabetes. Design, setting, and participants: This randomized, double-blind, clinical trial was conducted at 6 centers in the US (randomizations from July 20, 2020, to October 13, 2021; follow-up completed September 15, 2022) and included youths with newly diagnosed type 1 diabetes aged 7 to 17 years. Interventions: Random assignment to intensive diabetes management, which included use of an automated insulin delivery system (n = 61), or standard care, which included use of a continuous glucose monitor (n = 52), as part of a factorial design in which participants weighing 30 kg or more also were assigned to receive either oral verapamil or placebo. Main outcomes and measures: The primary outcome was mixed-meal tolerance test-stimulated C-peptide area under the curve (a measure of pancreatic beta cell function) 52 weeks from diagnosis. Results: Among 113 participants (mean [SD] age, 11.8 [2.8] years; 49 females [43%]; mean [SD] time from diagnosis to randomization, 24 [5] days), 108 (96%) completed the trial. The mean C-peptide area under the curve decreased from 0.57 pmol/mL at baseline to 0.45 pmol/mL at 52 weeks in the intensive management group, and from 0.60 to 0.50 pmol/mL in the standard care group (treatment group difference, -0.01 [95% CI, -0.11 to 0.10]; P = .89). The mean time in the target range of 70 to 180 mg/dL, measured with continuous glucose monitoring, at 52 weeks was 78% in the intensive management group vs 64% in the standard care group (adjusted difference, 16% [95% CI, 10% to 22%]). One severe hypoglycemia event and 1 diabetic ketoacidosis event occurred in each group. Conclusions and relevance: In youths with newly diagnosed type 1 diabetes, intensive diabetes management, which included automated insulin delivery, achieved excellent glucose control but did not affect the decline in pancreatic C-peptide secretion at 52 weeks.Item Effect of Verapamil on Pancreatic Beta Cell Function in Newly Diagnosed Pediatric Type 1 Diabetes: A Randomized Clinical Trial(American Medical Association, 2023) Forlenza, Gregory P.; McVean, Jennifer; Beck, Roy W.; Bauza, Colleen; Bailey, Ryan; Buckingham, Bruce; DiMeglio, Linda A.; Sherr, Jennifer L.; Clements, Mark; Neyman, Anna; Evans-Molina, Carmella; Sims, Emily K.; Messer, Laurel H.; Ekhlaspour, Laya; McDonough, Ryan; Van Name, Michelle; Rojas, Diana; Beasley, Shannon; DuBose, Stephanie; Kollman, Craig; Moran, Antoinette; CLVer Study Group; Pediatrics, School of MedicineImportance: In preclinical studies, thioredoxin-interacting protein overexpression induces pancreatic beta cell apoptosis and is involved in glucotoxicity-induced beta cell death. Calcium channel blockers reduce these effects and may be beneficial to beta cell preservation in type 1 diabetes. Objective: To determine the effect of verapamil on pancreatic beta cell function in children and adolescents with newly diagnosed type 1 diabetes. Design, setting, and participants: This double-blind, randomized clinical trial including children and adolescents aged 7 to 17 years with newly diagnosed type 1 diabetes who weighed 30 kg or greater was conducted at 6 centers in the US (randomized participants between July 20, 2020, and October 13, 2021) and follow-up was completed on September 15, 2022. Interventions: Participants were randomly assigned 1:1 to once-daily oral verapamil (n = 47) or placebo (n = 41) as part of a factorial design in which participants also were assigned to receive either intensive diabetes management or standard diabetes care. Main outcomes and measures: The primary outcome was area under the curve values for C-peptide level (a measure of pancreatic beta cell function) stimulated by a mixed-meal tolerance test at 52 weeks from diagnosis of type 1 diabetes. Results: Among 88 participants (mean age, 12.7 [SD, 2.4] years; 36 were female [41%]; and the mean time from diagnosis to randomization was 24 [SD, 4] days), 83 (94%) completed the trial. In the verapamil group, the mean C-peptide area under the curve was 0.66 pmol/mL at baseline and 0.65 pmol/mL at 52 weeks compared with 0.60 pmol/mL at baseline and 0.44 pmol/mL at 52 weeks in the placebo group (adjusted between-group difference, 0.14 pmol/mL [95% CI, 0.01 to 0.27 pmol/mL]; P = .04). This equates to a 30% higher C-peptide level at 52 weeks with verapamil. The percentage of participants with a 52-week peak C-peptide level of 0.2 pmol/mL or greater was 95% (41 of 43 participants) in the verapamil group vs 71% (27 of 38 participants) in the placebo group. At 52 weeks, hemoglobin A1c was 6.6% in the verapamil group vs 6.9% in the placebo group (adjusted between-group difference, -0.3% [95% CI, -1.0% to 0.4%]). Eight participants (17%) in the verapamil group and 8 participants (20%) in the placebo group had a nonserious adverse event considered to be related to treatment. Conclusions and relevance: In children and adolescents with newly diagnosed type 1 diabetes, verapamil partially preserved stimulated C-peptide secretion at 52 weeks from diagnosis compared with placebo. Further studies are needed to determine the longitudinal durability of C-peptide improvement and the optimal length of therapy.Item IL-6 receptor blockade does not slow β cell loss in new-onset type 1 diabetes(American Society for Clinical Investigation, 2021) Greenbaum, Carla J.; Serti, Elisavet; Lambert, Katharina; Weiner, Lia J.; Kanaparthi, Sai; Lord, Sandra; Gitelman, Stephen E.; Wilson, Darrell M.; Gaglia, Jason L.; Griffin, Kurt J.; Russell, William E.; Raskin, Philip; Moran, Antoinette; Willi, Steven M.; Tsalikian, Eva; DiMeglio, Linda A.; Herold, Kevan C.; Moore, Wayne V.; Goland, Robin; Harris, Mark; Craig, Maria E.; Schatz, Desmond A.; Baidal, David A.; Rodriguez, Henry; Utzschneider, Kristina M.; Nel, Hendrik J.; Soppe, Carol L.; Boyle, Karen D.; Cerosaletti, Karen; Keyes-Elstein, Lynette; Long, S. Alice; Thomas, Ranjeny; McNamara, James G.; Buckner, Jane H.; Sanda, Srinath; ITN058AI EXTEND Study Team; Pediatrics, School of MedicineBackground: IL-6 receptor (IL-6R) signaling drives development of T cell populations important to type 1 diabetes pathogenesis. We evaluated whether blockade of IL-6R with monoclonal antibody tocilizumab would slow loss of residual β cell function in newly diagnosed type 1 diabetes patients. Methods: We conducted a multicenter, randomized, placebo-controlled, double-blind trial with tocilizumab in new-onset type 1 diabetes. Participants were screened within 100 days of diagnosis. Eligible participants were randomized 2:1 to receive 7 monthly doses of tocilizumab or placebo. The primary outcome was the change from screening in the mean AUC of C-peptide collected during the first 2 hours of a mixed meal tolerance test at week 52 in pediatric participants (ages 6–17 years). Results: There was no statistical difference in the primary outcome between tocilizumab and placebo. Immunophenotyping showed reductions in downstream signaling of the IL-6R in T cells but no changes in CD4 memory subsets, Th17 cells, Tregs, or CD4+ T effector cell resistance to Treg suppression. A DC subset decreased during therapy but regressed to baseline once therapy stopped. Tocilizumab was well tolerated. Conclusion: Tocilizumab reduced T cell IL-6R signaling but did not modulate CD4+ T cell phenotypes or slow loss of residual β cell function in newly diagnosed individuals with type 1 diabetes.Item Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials(Elsevier, 2013) Moran, Antoinette; Bundy, Brian; Becker, Dorothy J.; DiMeglio, Linda A.; Gitelman, Stephen E.; Goland, Robin; Greenbaum, Carla J.; Herold, Kevan C.; Marks, Jennifer B.; Raskin, Philip; Sanda, Srinath; Schatz, Desmond; Wherrett, Diane K.; Wilson, Darrell M.; Krischer, Jeffrey P.; Skyler, Jay S.; Pickersgill, Linda; de Koning, Eelco; Ziegler, Anette-G; Böehm, Bernhard; Badenhoop, Klaus; Schloot, Nanette; Bak, Jens Friis; Pozzilli, Paolo; Mauricio, Didac; Donath, Marc Y.; Castaño, Luis; Wägner, Ana; Lervang, Hans Henrik; Perrild, Hans; Poulsen, Thomas Mandrup; Pediatrics, School of MedicineBackground: Innate immunity contributes to the pathogenesis of autoimmune diseases, such as type 1 diabetes, but until now no randomised, controlled trials of blockade of the key innate immune mediator interleukin-1 have been done. We aimed to assess whether canakinumab, a human monoclonal anti-interleukin-1 antibody, or anakinra, a human interleukin-1 receptor antagonist, improved β-cell function in recent-onset type 1 diabetes. Methods: We did two randomised, placebo-controlled trials in two groups of patients with recent-onset type 1 diabetes and mixed-meal-tolerance-test-stimulated C peptide of at least 0·2 nM. Patients in the canakinumab trial were aged 6-45 years and those in the anakinra trial were aged 18-35 years. Patients in the canakinumab trial were enrolled at 12 sites in the USA and Canada and those in the anakinra trial were enrolled at 14 sites across Europe. Participants were randomly assigned by computer-generated blocked randomisation to subcutaneous injection of either 2 mg/kg (maximum 300 mg) canakinumab or placebo monthly for 12 months or 100 mg anakinra or placebo daily for 9 months. Participants and carers were masked to treatment assignment. The primary endpoint was baseline-adjusted 2-h area under curve C-peptide response to the mixed meal tolerance test at 12 months (canakinumab trial) and 9 months (anakinra trial). Analyses were by intention to treat. These studies are registered with ClinicalTrials.gov, numbers NCT00947427 and NCT00711503, and EudraCT number 2007-007146-34. Findings: Patients were enrolled in the canakinumab trial between Nov 12, 2010, and April 11, 2011, and in the anakinra trial between Jan 26, 2009, and May 25, 2011. 69 patients were randomly assigned to canakinumab (n=47) or placebo (n=22) monthly for 12 months and 69 were randomly assigned to anakinra (n=35) or placebo (n=34) daily for 9 months. No interim analyses were done. 45 canakinumab-treated and 21 placebo-treated patients in the canakinumab trial and 25 anakinra-treated and 26 placebo-treated patients in the anakinra trial were included in the primary analyses. The difference in C peptide area under curve between the canakinumab and placebo groups at 12 months was 0·01 nmol/L (95% CI -0·11 to 0·14; p=0·86), and between the anakinra and the placebo groups at 9 months was 0·02 nmol/L (-0·09 to 0·15; p=0·71). The number and severity of adverse events did not differ between groups in the canakinumab trial. In the anakinra trial, patients in the anakinra group had significantly higher grades of adverse events than the placebo group (p=0·018), which was mainly because of a higher number of injection site reactions in the anakinra group. Interpretation: Canakinumab and anakinra were safe but were not effective as single immunomodulatory drugs in recent-onset type 1 diabetes. Interleukin-1 blockade might be more effective in combination with treatments that target adaptive immunity in organ-specific autoimmune disorders.Item Oral Glucose Tolerance Test Measures of First-phase Insulin Response and Their Predictive Ability for Type 1 Diabetes(Oxford University Press, 2022) Baidal, David A.; Warnock, Megan; Xu, Ping; Geyer, Susan; Marks, Jennifer B.; Moran, Antoinette; Sosenko, Jay; Evans-Molina, Carmella; Pediatrics, School of MedicineContext: Decreased first-phase insulin response (FPIR) during intravenous glucose tolerance testing (IVGTT) is an early indicator of β-cell dysfunction and predictor of type 1 diabetes (T1D). Objective: Assess whether oral glucose tolerance test (OGTT) measures could serve as FPIR alternatives in their ability to predict T1D in autoantibody positive (Aab+) subjects. Design: OGTT and IVGTT were performed within 30 days of each other. Eleven OGTT variables were evaluated for (1) correlation with FPIR and (2) T1D prediction. Setting: Type 1 Diabetes TrialNet "Oral Insulin for Prevention of Diabetes in Relatives at Risk for T1D" (TN-07) and Diabetes Prevention Trial-Type 1 Diabetes (DPT-1) studies clinical sites. Patients: TN-07 (n = 292; age 9.4 ± 6.1 years) and DPT-1 (n = 194; age 15.1 ± 10.0 years) Aab + relatives of T1D individuals. Main outcome measures: (1) Correlation coefficients of OGTT measures with FPIR and (2) T1D prediction at 2 years using area under receiver operating characteristic (ROCAUC) curves. Results: Index60 showed the strongest correlation in DPT-1 (r = -0.562) but was weaker in TN-07 (r = -0.378). C-peptide index consistently showed good correlation with FPIR across studies (TN-07, r = 0.583; DPT-1, r = 0.544; P < 0.0001). Index60 and C-peptide index had the highest ROCAUCs for T1D prediction (0.778 vs 0.717 in TN-07 and 0.763 vs 0.721 in DPT-1, respectively; P = NS), followed by FPIR (0.707 in TN-07; 0.628 in DPT-1). Conclusions: C-peptide index was the strongest measure to correlate with FPIR in both studies. Index60 and C-peptide index had the highest predictive accuracy for T1D and were comparable. OGTTs could be considered instead of IVGTTs for subject stratification in T1D prevention trials.Item The Role of Age and Excess Body Mass Index in Progression to Type 1 Diabetes in At-Risk Adults(Oxford University Press, 2017-12-01) Ferrara, Christine T.; Geyer, Susan M.; Evans-Molina, Carmella; Libman, Ingrid M.; Becker, Dorothy J.; Wentworth, John M.; Moran, Antoinette; Gitelman, Stephen E.; Redondo, Maria J.; Medicine, School of MedicineBackground: Given the global rise in both type 1 diabetes incidence and obesity, the role of body mass index (BMI) on type 1 diabetes pathophysiology has gained great interest. Sustained excess BMI in pediatric participants of the TrialNet Pathway to Prevention (PTP) cohort increased risk for progression to type 1 diabetes, but the effects of age and obesity in adults remain largely unknown. Objective: To determine the effect of age and sustained obesity on the risk for type 1 diabetes in adult participants in the TrialNet PTP cohort (i.e., nondiabetic autoantibody-positive relatives of patients with type 1 diabetes). Research Design and Methods: Longitudinally accumulated BMI >25 kg/m2 was calculated to generate a cumulative excess BMI (ceBMI) for each participant, with ceBMI values ≥0 kg/m2 and ≥5 kg/m2 representing sustained overweight or obese status, respectively. Recursive partitioning analysis yielded sex- and age-specific thresholds for ceBMI that confer the greatest risk for type 1 diabetes progression. Results: In this cohort of 665 adults (age 20 to 50 years; median follow-up, 3.9 years), 49 participants developed type 1 diabetes. Age was an independent protective factor for type 1 diabetes progression (hazard ratio, 0.95; P = 0.008), with a threshold of >35 years that reduced risk for type 1 diabetes. In men age >35 years and women age <35 years, sustained obesity (ceBMI ≥5 kg/m2) increased the risk for type 1 diabetes. Conclusions: Age is an important factor for type 1 diabetes progression in adults and influences the impact of elevated BMI, indicating an interplay of excess weight, age, and sex in adult type 1 diabetes pathophysiology.Item Safety and prescribing recommendations for verapamil in newly diagnosed pediatric type 1 diabetes (T1D): The CLVer experience(Elsevier, 2024-05-18) Ekhlaspour, Laya; Buckingham, Bruce; Bauza, Colleen; Clements, Mark; Forlenza, Gregory P.; Neyman, Anna; Norlander, Lisa; Schamberger, Marcus; Sherr, Jennifer L.; Bailey, Ryan; Beck, Roy W.; Kollman, Craig; Beasley, Shannon; Cobry, Erin; DiMeglio, Linda A.; Paprocki, Emily; Van Name, Michelle; Moran, Antoinette; CLVer Study Group; Pediatrics, School of MedicineObjectives: To report the safety and side effects associated with taking verapamil for beta-cell preservation in children with newly-diagnosed T1D. Research design and methods: Eighty-eight participants aged 8.5 to 17.9 years weighing ≥ 30 kg were randomly assigned to verapamil (N = 47) or placebo (N = 41) within 31 days of T1D diagnosis and followed for 12 months from diagnosis, main CLVer study. Drug dosing was weight-based with incremental increases to full dosage. Side effect monitoring included serial measurements of pulse, blood pressure, liver enzymes, and electrocardiograms (ECGs). At study end, participants were enrolled in an observational extension study (CLVerEx), which is ongoing. No study drug is provided during the extension, but participants may use verapamil if prescribed by their diabetes care team. Results: Overall rates of adverse events were low and comparable between verapamil and placebo groups. There was no difference in the frequency of liver function abnormalities. Three CLVer participants reduced or discontinued medication due to asymptomatic ECG changes. One CLVerEx participant (18 years old), treated with placebo during CLVer, who had not had a monitoring ECG, experienced complete AV block with a severe hypotensive episode 6 weeks after reaching his maximum verapamil dose following an inadvertent double dose on the day of the event. Conclusions: The use of verapamil in youth newly-diagnosed with T1D appears generally safe and well tolerated with appropriate monitoring. We strongly recommend monitoring for potential side effects including an ECG at screening and an additional ECG once full dosage is reached.