ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mooney, Sean"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Informatics Approaches to Linking Mutations to Biological Pathways, Networks and Clinical Data
    (2011-07-08) Singh, Arti; Mooney, Sean; Jung, Jeesun; Romero, Pedro
    The information gained from sequencing of the human genome has begun to transform human biology and genetic medicine. The discovery of functionally important genetic variation lies at the heart of these endeavors, and there has been substantial progress in understanding the common patterns of single-nucleotide polymorphism (SNP) in humans- the most frequent type of variation in humans. Although more than 99% of human DNA sequences are the same across the population, variations in DNA sequence have a major impact on how we humans respond to disease; to environmental entities such as bacteria, viruses, toxins, and chemicals; and drugs and other therapies and thus studying differences between our genomes is vital. This makes SNPs as well other genetic variation data of great value for biomedical research and for developing pharmaceutical products or medical diagnostics. The goal of the project is to link genetic variation data to biological pathways and networks data, and also to clinical data for creating a framework for translational and systems biology studies. The study of the interactions between the components of biological systems and biological pathways has become increasingly important. It is known and accepted by scientists that it as important to study different biological entities as interacting systems, as in isolation. This project has ideas rooted in this thinking aiming at the integration of a genetic variation dataset with biological pathways dataset. Annotating genetic variation data with standardized disease notation is a very difficult yet important endeavor. One of the goals of this research is to identify whether informatics approaches can be applied to automatically annotate genetic variation data with a classification of diseases.
  • Loading...
    Thumbnail Image
    Item
    MutDB services: interactive structural analysis of mutation data
    (Oxford University Press, 2005-07-01) Dantzer, Jessica; Moad, Charles; Heiland, Randy; Mooney, Sean; BioHealth Informatics, School of Informatics and Computing
    Non-synonymous single nucleotide polymorphisms (SNPs) and mutations have been associated with human phenotypes and disease. As more and more SNPs are mapped to phenotypes, understanding how these variations affect the function and expression of genes and gene products becomes an important endeavor. We have developed a set of tools to aid in the understanding of how amino acid substitutions affect protein structures. To do this, we have annotated SNPs in dbSNP and amino acid substitutions in Swiss-Prot with protein structural information, if available. We then developed a novel web interface to this data that allows for visualization of the location of these substitutions. We have also developed a web service interface to the dataset and developed interactive plugins for UCSF's Chimera structural modeling tool and PyMOL that integrate our annotations with these sophisticated structural visualization and modeling tools. The web services portal and plugins can be downloaded from http://www.lifescienceweb.org/ and the web interface is at http://www.mutdb.org/ .
  • Loading...
    Thumbnail Image
    Item
    Research informatics and the COVID-19 pandemic: Challenges, innovations, lessons learned, and recommendations
    (Cambridge University Press, 2021-03-16) Bookman, Richard J.; Cimino, James J.; Harle, Christopher A.; Kost, Rhonda G.; Mooney, Sean; Pfaff, Emily; Rojevsky, Svetlana; Tobin, Jonathan N.; Wilcox, Adam; Tsinoremas, Nick F.; Health Policy and Management, Richard M. Fairbanks School of Public Health
    The recipients of NIH's Clinical and Translational Science Awards (CTSA) have worked for over a decade to build informatics infrastructure in support of clinical and translational research. This infrastructure has proved invaluable for supporting responses to the current COVID-19 pandemic through direct patient care, clinical decision support, training researchers and practitioners, as well as public health surveillance and clinical research to levels that could not have been accomplished without the years of ground-laying work by the CTSAs. In this paper, we provide a perspective on our COVID-19 work and present relevant results of a survey of CTSA sites to broaden our understanding of the key features of their informatics programs, the informatics-related challenges they have experienced under COVID-19, and some of the innovations and solutions they developed in response to the pandemic. Responses demonstrated increased reliance by healthcare providers and researchers on access to electronic health record (EHR) data, both for local needs and for sharing with other institutions and national consortia. The initial work of the CTSAs on data capture, standards, interchange, and sharing policies all contributed to solutions, best illustrated by the creation, in record time, of a national clinical data repository in the National COVID-19 Cohort Collaborative (N3C). The survey data support seven recommendations for areas of informatics and public health investment and further study to support clinical and translational research in the post-COVID-19 era.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University