- Browse by Author
Browsing by Author "Mohseni, Morvarid"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis(Elsevier, 2018-12-06) Cai, Zhigang; Kotzin, Jonathan J.; Ramdas, Baskar; Chen, Sisi; Nelanuthala, Sai; Palam, Lakshmi Reddy; Pandey, Ruchi; Mali, Raghuveer Singh; Liu, Yan; Kelley, Mark R.; Sandusky, George; Mohseni, Morvarid; Williams, Adam; Henao-Mejia, Jorge; Kapur, Reuben; Pediatrics, School of MedicineInflammation is a risk factor for cancer development. Individuals with preleukemic TET2 mutations manifest clonal hematopoiesis and are at a higher risk of developing leukemia. How inflammatory signals influence the survival of preleukemic hematopoietic stem and progenitor cells (HSPCs) is unclear. We show a rapid increase in the frequency and absolute number of Tet2-KO mature myeloid cells and HSPCs in response to inflammatory stress, which results in enhanced production of inflammatory cytokines, including interleukin-6 (IL-6), and resistance to apoptosis. IL-6 induces hyperactivation of the Shp2-Stat3 signaling axis, resulting in increased expression of a novel anti-apoptotic long non-coding RNA (lncRNAs), Morrbid, in Tet2-KO myeloid cells and HSPCs. Expression of activated Shp2 in HSPCs phenocopies Tet2 loss with regard to hyperactivation of Stat3 and Morrbid. In vivo, pharmacologic inhibition of Shp2 or Stat3 or genetic loss of Morrbid in Tet2 mutant mice rescues inflammatory-stress-induced abnormalities in HSPCs and mature myeloid cells, including clonal hematopoiesis.Item SHP2 inhibition reduces leukemogenesis in models of combined genetic and epigenetic mutations(The American Society for Clinical Investigation, 2019-12-02) Pandey, Ruchi; Ramdas, Baskar; Wan, Changlin; Sandusky, George; Mohseni, Morvarid; Zhang, Chi; Kapur, Reuben; Electrical and Computer Engineering, School of Engineering and TechnologyIn patients with acute myeloid leukemia (AML), 10% to 30% with the normal karyotype express mutations in regulators of DNA methylation, such as TET2 or DNMT3A, in conjunction with activating mutation in the receptor tyrosine kinase FLT3. These patients have a poor prognosis because they do not respond well to established therapies. Here, utilizing mouse models of AML that recapitulate cardinal features of the human disease and bear a combination of loss-of-function mutations in either Tet2 or Dnmt3a along with expression of Flt3ITD, we show that inhibition of the protein tyrosine phosphatase SHP2, which is essential for cytokine receptor signaling (including FLT3), by the small molecule allosteric inhibitor SHP099 impairs growth and induces differentiation of leukemic cells without impacting normal hematopoietic cells. We also show that SHP099 normalizes the gene expression program associated with increased cell proliferation and self-renewal in leukemic cells by downregulating the Myc signature. Our results provide a new and more effective target for treating a subset of patients with AML who bear a combination of genetic and epigenetic mutations.