ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mogesa, Benjamin"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Design, Synthesis, and Structure of Copper Dithione Complexes: Redox‐Dependent Charge Transfer
    (Wiley, 2019-12) Colston, Kyle J.; Dille, Sara A.; Mogesa, Benjamin; Astashkin, Andrei V.; Brant, Jacilynn A.; Zeller, Matthias; Basu, Partha; Chemistry and Chemical Biology, School of Science
    Redox‐active ligands impart versatility in transition metal complexes, which are attractive for photosensitizers, dye sensitized solar cells, photothermal therapy, etc. Dithiolene (Dt) ligands can transition between fully reduced and fully oxidized states. Herein, we report the syntheses, characterization, crystal structures and electronic properties of four [Cu(R2Dt0)2]+/2+ (R = Me, iPr) complexes, [Cu(iPr2Dt0)2][PF6] (1a), [Cu(iPr2Dt0)2][PF6]2 (1b), and [Cu(Me2Dt0)2][PF6] (2a), [Cu(Me2Dt0)2][PF6]2 (2b), where iPr2Dt0 = N,N′‐diisopropyl‐1,2‐piperazine dithione and Me2Dt0 = N,N′‐dimethyl‐1,2‐piperazine dithione. In addition, the molecular structure of [Cu(iPr2Dt0)2][BF4]2(1c) is also reported. Complexes 1a and 2a crystallized in the triclinic, P1 space group, and 1c crystallized in the monoclinic crystal system, space group C2/c. The single‐crystal X‐ray diffraction measurements show that the Cu(I) complexes have a distorted tetrahedral geometry, whereas the Cu(II) complex exhibits a true square‐planar geometry. Cu(I) complexes exhibit a low energy charge‐transfer band (450–650 nm), which are not observed in Cu(II) complexes. Electrochemical studies of these complexes show both ligand‐ and metal‐based redox couples.
  • Loading...
    Thumbnail Image
    Item
    Dithione, the antipodal redox partner of ene-1,2-dithiol ligands and their metal complexes
    (Elsevier, 2020) Basu, Partha; Colston, Kyle J.; Mogesa, Benjamin; Chemistry and Chemical Biology, School of Science
    Defining the oxidation state of the central atom in a coordination compound is fundamental in understanding the electronic structure and provides a starting point for elucidating molecular properties. The presence of non-innocent ligand(s) can obscure the oxidation state of the central atom as the ligand contribution to the electronic structure is difficult to ascertain. Redox-active ligands, such as dithiolene ligands, are well known non-innocent ligands that can exist in both a fully reduced (Dt2−) and fully oxidized (Dt0) states. Complexes containing the fully oxidized dithione state of the ligand are uncommon and only a few have been completely characterized. Dithione ligands are of interest due to their electron-deficient nature and ability to act as an electron acceptor for more electron-rich moieties, such as other dithiolene ligands or metal centers. This article focuses the syntheses, structures, and metal coordination, particularly coordination compounds, of dithione ligands. Various examples of mono, bis, and tris dithione complexes are discussed.
  • Loading...
    Thumbnail Image
    Item
    Syntheses, spectroscopic, redox, and structural properties of homoleptic Iron(III/II) dithione complexes
    (Royal Society of Chemistry, 2020-10-16) Colston, Kyle J.; Dille, Sara A.; Mogesa, Benjamin; Brant, Jacilynn; Nemykin, Victor N.; Zeller, Matthias; Basu, Partha; Chemistry and Chemical Biology, School of Science
    Two sets of FeIII/II dithione complexes [FeII( i Pr2Dt0)3][PF6]2 ([1][PF6]2), [FeII(Me2Dt0)3][PF6]2 ([2][PF6]2), and [FeIII( i Pr2Dt0)3][PF6]3 ([3][PF6]3), [FeIII(Me2Dt0)3][PF6]3 ([4][PF6]3), and compound [FeIII( i Pr2Dt0)3][FeCl4][PF]2 ([3][FeCl4][PF6]2) were synthesized from N,N'-diisopropyl piperazine-2,3-dithione ( i Pr2Dt0) and N,N'-dimethyl piperazine-2,3-dithione (Me2Dt0) ligands. Complexes [1][PF6]2-[4][PF6]3 have been characterized by NMR, IR, and UV-visible spectroscopies, and by electrochemistry. The molecular structures of [2][PF6]2 and [3][FeCl4][PF6]2 have been determined by X-ray crystallography. Complexes [2][PF6]2 and [3][FeCl4][PF6]2 both crystallized in the monoclinic space group P21/n. Both complexes exhibit distorted octahedral geometry and the three coordinated ligands in each complex exhibit different dithione folding. Complexes [1][PF6]2-[4][PF6]3 exhibit a single FeIII/II based couple and three quasi-reversible ligand-based redox couples. The electronic spectra of [1][PF6]2-[4][PF6]3 show intense MLCT bands that indicate strong mixing between metal and ligand orbitals. DFT calculations were used to provide a framework for understanding the electronic origin of their redox chemistry and spectroscopic features.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University