- Browse by Author
Browsing by Author "Modave, François"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Classifying early infant feeding status from clinical notes using natural language processing and machine learning(Springer Nature, 2024-04-03) Lemas, Dominick J.; Du, Xinsong; Rouhizadeh, Masoud; Lewis, Braeden; Frank, Simon; Wright, Lauren; Spirache, Alex; Gonzalez, Lisa; Cheves, Ryan; Magalhães, Marina; Zapata, Ruben; Reddy, Rahul; Xu, Ke; Parker, Leslie; Harle, Chris; Young, Bridget; Louis‑Jaques, Adetola; Zhang, Bouri; Thompson, Lindsay; Hogan, William R.; Modave, François; Health Policy and Management, Richard M. Fairbanks School of Public HealthThe objective of this study is to develop and evaluate natural language processing (NLP) and machine learning models to predict infant feeding status from clinical notes in the Epic electronic health records system. The primary outcome was the classification of infant feeding status from clinical notes using Medical Subject Headings (MeSH) terms. Annotation of notes was completed using TeamTat to uniquely classify clinical notes according to infant feeding status. We trained 6 machine learning models to classify infant feeding status: logistic regression, random forest, XGBoost gradient descent, k-nearest neighbors, and support-vector classifier. Model comparison was evaluated based on overall accuracy, precision, recall, and F1 score. Our modeling corpus included an even number of clinical notes that was a balanced sample across each class. We manually reviewed 999 notes that represented 746 mother-infant dyads with a mean gestational age of 38.9 weeks and a mean maternal age of 26.6 years. The most frequent feeding status classification present for this study was exclusive breastfeeding [n = 183 (18.3%)], followed by exclusive formula bottle feeding [n = 146 (14.6%)], and exclusive feeding of expressed mother’s milk [n = 102 (10.2%)], with mixed feeding being the least frequent [n = 23 (2.3%)]. Our final analysis evaluated the classification of clinical notes as breast, formula/bottle, and missing. The machine learning models were trained on these three classes after performing balancing and down sampling. The XGBoost model outperformed all others by achieving an accuracy of 90.1%, a macro-averaged precision of 90.3%, a macro-averaged recall of 90.1%, and a macro-averaged F1 score of 90.1%. Our results demonstrate that natural language processing can be applied to clinical notes stored in the electronic health records to classify infant feeding status. Early identification of breastfeeding status using NLP on unstructured electronic health records data can be used to inform precision public health interventions focused on improving lactation support for postpartum patients.Item Study protocol for a type III hybrid effectiveness-implementation trial to evaluate scaling interoperable clinical decision support for patient-centered chronic pain management in primary care(Springer Nature, 2022-07-15) Salloum, Ramzi G.; Bilello, Lori; Bian, Jiang; Diiulio, Julie; Gonzalez Paz, Laura; Gurka, Matthew J.; Gutierrez, Maria; Hurley, Robert W.; Jones, Ross E.; Martinez‑Wittinghan, Francisco; Marcial, Laura; Masri, Ghania; McDonnell, Cara; Militello, Laura G.; Modave, François; Nguyen, Khoa; Rhodes, Bryn; Siler, Kendra; Willis, David; Harle, Christopher A.; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthBackground: The US continues to face public health crises related to both chronic pain and opioid overdoses. Thirty percent of Americans suffer from chronic noncancer pain at an estimated yearly cost of over $600 billion. Most patients with chronic pain turn to primary care clinicians who must choose from myriad treatment options based on relative risks and benefits, patient history, available resources, symptoms, and goals. Recently, with attention to opioid-related risks, prescribing has declined. However, clinical experts have countered with concerns that some patients for whom opioid-related benefits outweigh risks may be inappropriately discontinued from opioids. Unfortunately, primary care clinicians lack usable tools to help them partner with their patients in choosing pain treatment options that best balance risks and benefits in the context of patient history, resources, symptoms, and goals. Thus, primary care clinicians and patients would benefit from patient-centered clinical decision support (CDS) for this shared decision-making process. Methods: The objective of this 3-year project is to study the adaptation and implementation of an existing interoperable CDS tool for pain treatment shared decision making, with tailored implementation support, in new clinical settings in the OneFlorida Clinical Research Consortium. Our central hypothesis is that tailored implementation support will increase CDS adoption and shared decision making. We further hypothesize that increases in shared decision making will lead to improved patient outcomes, specifically pain and physical function. The CDS implementation will be guided by the Exploration, Preparation, Implementation, Sustainment (EPIS) framework. The evaluation will be organized by the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework. We will adapt and tailor PainManager, an open source interoperable CDS tool, for implementation in primary care clinics affiliated with the OneFlorida Clinical Research Consortium. We will evaluate the effect of tailored implementation support on PainManager's adoption for pain treatment shared decision making. This evaluation will establish the feasibility and obtain preliminary data in preparation for a multi-site pragmatic trial targeting the effectiveness of PainManager and tailored implementation support on shared decision making and patient-reported pain and physical function. Discussion: This research will generate evidence on strategies for implementing interoperable CDS in new clinical settings across different types of electronic health records (EHRs). The study will also inform tailored implementation strategies to be further tested in a subsequent hybrid effectiveness-implementation trial. Together, these efforts will lead to important new technology and evidence that patients, clinicians, and health systems can use to improve care for millions of Americans who suffer from pain and other chronic conditions.