- Browse by Author
Browsing by Author "Moberly, Steven P."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Contribution of electromechanical coupling between KV and CaV1.2 channels to coronary dysfunction in obesity(Springer, 2013) Berwick, Zachary C.; Dick, Gregory M.; O’Leary, Heather A.; Bender, Shawn B.; Goodwill, Adam G.; Moberly, Steven P.; Kohr Owen, Meredith; Miller, Steven J.; Obukhov, Alexander G.; Tune, Johnathan D.; Cellular and Integrative Physiology, School of MedicinePrevious investigations indicate that diminished functional expression of voltage-dependent K(+) (KV) channels impairs control of coronary blood flow in obesity/metabolic syndrome. The goal of this investigation was to test the hypothesis that KV channels are electromechanically coupled to CaV1.2 channels and that coronary microvascular dysfunction in obesity is related to subsequent increases in CaV1.2 channel activity. Initial studies revealed that inhibition of KV channels with 4-aminopyridine (4AP, 0.3 mM) increased intracellular [Ca(2+)], contracted isolated coronary arterioles and decreased coronary reactive hyperemia. These effects were reversed by blockade of CaV1.2 channels. Further studies in chronically instrumented Ossabaw swine showed that inhibition of CaV1.2 channels with nifedipine (10 μg/kg, iv) had no effect on coronary blood flow at rest or during exercise in lean swine. However, inhibition of CaV1.2 channels significantly increased coronary blood flow, conductance, and the balance between coronary flow and metabolism in obese swine (P < 0.05). These changes were associated with a ~50 % increase in inward CaV1.2 current and elevations in expression of the pore-forming subunit (α1c) of CaV1.2 channels in coronary smooth muscle cells from obese swine. Taken together, these findings indicate that electromechanical coupling between KV and CaV1.2 channels is involved in the regulation of coronary vasomotor tone and that increases in CaV1.2 channel activity contribute to coronary microvascular dysfunction in the setting of obesity.Item Contribution of hydrogen sulfide to the control of coronary blood flow(Wiley, 2014-02) Casalini, Eli D.; Goodwill, Adam G.; Owen, Meredith K.; Moberly, Steven P.; Berwick, Zachary C.; Tune, Johnathan D.; Department of Cellular & Integrative Physiology, IU School of MedicineThis study examined the mechanisms by which H2S modulates coronary microvascular resistance and myocardial perfusion at rest and in response to cardiac ischemia. Experiments were conducted in isolated coronary arteries and in open-chest anesthetized dogs. We found that the H2S substrate L-cysteine (1-10 mM) did not alter coronary tone of isolated arteries in vitro or coronary blood flow in vivo. In contrast, intracoronary (ic) H2S (0.1-3 mM) increased coronary flow from 0.49 ± 0.08 to 2.65 ± 0.13 ml/min/g (P□0.001). This increase in flow was unaffected by inhibition of Kv channels with 4-aminopyridine (P=0.127) but was attenuated (0.23 ± 0.02 to 1.13 ± 0.13 ml/min/g) by the KATP channel antagonist glibenclamide (P□0.001). Inhibition of NO synthesis (L-NAME) did not attenuate coronary responses to H2S. Immunohistochemistry revealed expression of cystathionine gamma-lyase (CSE), an endogenous H2S enzyme, in myocardium. Inhibition of CSE with β-cyano-L-alanine (10 µM) had no effect on baseline coronary flow or responses to a 15 sec coronary occlusion (P=0.82). These findings demonstrate that exogenous H2S induces potent, endothelial-independent dilation of the coronary microcirculation predominantly through the activation of KATP channels, however, our data do not support a functional role for endogenous H2S in the regulation of coronary microvascular resistance.Item Distinct hemodynamic responses to (pyr)apelin-13 in large animal models(APS, 2020-04) Tune, Johnathan D.; Baker, Hana E.; Berwick, Zachary; Moberly, Steven P.; Casalini, Eli D.; Noblet, Jillian N.; Zhen, Eugene; Kowala, Mark C.; Christe, Michael E.; Goodwill, Adam; Cellular and Integrative Physiology, School of MedicineThis study tested the hypothesis that (pyr)apelin-13 dose-dependently augments myocardial contractility and coronary blood flow, irrespective of changes in systemic hemodynamics. Acute effects of intravenous (pyr)apelin-13 administration (10 to 1,000 nM) on blood pressure, heart rate, left ventricular pressure and volume, and coronary parameters were measured in dogs and pigs. Administration of (pyr)apelin-13 did not influence blood pressure (P = 0.59), dP/dtmax (P = 0.26), or dP/dtmin (P = 0.85) in dogs. However, heart rate dose-dependently increased > 70% (P < 0.01), which was accompanied by a significant increase in coronary blood flow (P < 0.05) and reductions in left ventricular end-diastolic volume and stroke volume (P < 0.001). In contrast, (pyr)apelin-13 did not significantly affect hemodynamics, coronary blood flow, or indexes of contractile function in pigs. Furthermore, swine studies found no effect of intracoronary (pyr)apelin-13 administration on coronary blood flow (P = 0.83) or vasorelaxation in isolated, endothelium-intact (P = 0.89) or denuded (P = 0.38) coronary artery rings. Examination of all data across (pyr)apelin-13 concentrations revealed an exponential increase in cardiac output as peripheral resistance decreased across pigs and dogs (P < 0.001; R2 = 0.78). Assessment of the Frank-Starling relationship demonstrated a significant linear relationship between left ventricular end-diastolic volume and stroke volume across species (P < 0.001; R2 = 0.70). Taken together, these findings demonstrate that (pyr)apelin-13 does not directly influence myocardial contractility or coronary blood flow in either dogs or pigs.Item Equivalence of arterial and venous blood for [11C]CO2-metabolite analysis following intravenous administration of 1-[11C]acetate and 1-[11C]palmitate(Elsevier, 2013-04) Ng, Yen; Moberly, Steven P.; Mather, Kieren J.; Brown-Proctor, Clive; Hutchins, Gary D.; Green, Mark A.; Department of Cellular & Integrative Physiology, IU School of MedicinePURPOSE: Sampling of arterial blood for metabolite correction is often required to define a true radiotracer input function in quantitative modeling of PET data. However, arterial puncture for blood sampling is often undesirable. To establish whether venous blood could substitute for arterial blood in metabolite analysis for quantitative PET studies with 1-[(11)C]acetate and 1-[(11)C]palmitate, we compared the results of [(11)C]CO2-metabolite analyses performed on simultaneously collected arterial and venous blood samples. METHODS: Paired arterial and venous blood samples were drawn from anesthetized pigs at 1, 3, 6, 8, 10, 15, 20, 25 and 30min after i.v. administration of 1-[(11)C]acetate and 1-[(11)C]palmitate. Blood radioactivity present as [(11)C]CO2 was determined employing a validated 10-min gas-purge method. Briefly, total blood (11)C radioactivity was counted in base-treated [(11)C]-blood samples, and non-[(11)C]CO2 radioactivity was counted after the [(11)C]-blood was acidified using 6N HCl and bubbled with air for 10min to quantitatively remove [(11)C]CO2. RESULTS: An excellent correlation was found between concurrent arterial and venous [(11)C]CO2 levels. For the [(11)C]acetate study, the regression equation derived to estimate the venous [(11)C]CO2 from the arterial values was: y=0.994x+0.004 (r(2)=0.97), and for the [(11)C]palmitate: y=0.964x-0.001 (r(2)=0.9). Over the 1-30min period, the fraction of total blood (11)C present as [(11)C]CO2 rose from 4% to 64% for acetate, and 0% to 24% for palmitate. The rate of [(11)C]CO2 appearance in venous blood appears similar for the pig model and humans following i.v. [(11)C]-acetate administration. CONCLUSION: Venous blood [(11)C]CO2 values appear suitable as substitutes for arterial blood samples in [(11)C]CO2 metabolite analysis after administration of [(11)C]acetate or [(11)C]palmitate ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Quantitative PET studies employing 1-[(11)C]acetate and 1-[(11)C]palmitate can employ venous blood samples for metabolite correction of an image-derived tracer arterial input function, thereby avoiding the risks of direct arterial blood sampling.Item Impaired Cardiometabolic Responses to Glucagon-Like Peptide 1 in Obesity and Type 2 Diabetes Mellitus(Springer, 2013) Moberly, Steven P.; Mather, Kieren J.; Berwick, Zachary C.; Owen, Meredith K.; Goodwill, Adam G.; Casalini, Eli D.; Hutchins, Gary D.; Green, Mark A.; Ng, Yen; Considine, Robert V.; Perry, Kevin M.; Chisholm, Robin L.; Tune, Johnathan D.; Cellular and Integrative Physiology, School of MedicineGlucagon-like peptide 1 (GLP-1) has insulin-like effects on myocardial glucose uptake which may contribute to its beneficial effects in the setting of myocardial ischemia. Whether these effects are different in the setting of obesity or type 2 diabetes (T2DM) requires investigation. We examined the cardiometabolic actions of GLP-1 (7-36) in lean and obese/T2DM humans, and in lean and obese Ossabaw swine. GLP-1 significantly augmented myocardial glucose uptake under resting conditions in lean humans, but this effect was impaired in T2DM. This observation was confirmed and extended in swine, where GLP-1 effects to augment myocardial glucose uptake during exercise were seen in lean but not in obese swine. GLP-1 did not increase myocardial oxygen consumption or blood flow in humans or in swine. Impaired myocardial responsiveness to GLP-1 in obesity was not associated with any apparent alterations in myocardial or coronary GLP1-R expression. No evidence for GLP-1-mediated activation of cAMP/PKA or AMPK signaling in lean or obese hearts was observed. GLP-1 treatment augmented p38-MAPK activity in lean, but not obese cardiac tissue. Taken together, these data provide novel evidence indicating that the cardiometabolic effects of GLP-1 are attenuated in obesity and T2DM, via mechanisms that may involve impaired p38-MAPK signaling.Item Intracoronary glucagon-like peptide 1 preferentially augments glucose uptake in ischemic myocardium independent of changes in coronary flow(SAGE, 2012-03) Moberly, Steven P.; Berwick, Zachary C.; Kohr, Meredith; Svendsen, Mark; Mather, Kieren J.; Tune, Johnathan D.; Department of Cellular & Integrative Physiology, IU School of MedicineWe examined the acute dose-dependent effects of intracoronary glucagon-like peptide (GLP)-1 (7-36) on coronary vascular tone, cardiac contractile function and metabolism in normal and ischemic myocardium. Experiments were conducted in open chest, anesthetized dogs at coronary perfusion pressures (CPP) of 100 and 40 mmHg before and during intracoronary GLP-1 (7-36) infusion (10 pmol/L to 1 nmol/L). Isometric tension studies were also conducted in isolated coronary arteries. Cardiac and coronary expression of GLP-1 receptors (GLP-1R) was assessed by Western blot and immunohistochemical analysis. GLP-1R was present in the myocardium and the coronary vasculature. The tension of intact and endothelium-denuded coronary artery rings was unaffected by GLP-1. At normal perfusion pressure (100 mmHg), intracoronary GLP-1 (7-36) (targeting plasma concentration 10 pmol/L to 1 nmol/L) did not affect blood pressure, coronary blood flow or myocardial oxygen consumption (MVO(2)); however, there were modest reductions in cardiac output and stroke volume. In untreated control hearts, reducing CPP to 40 mmHg produced marked reductions in coronary blood flow (0.50 ± 0.10 to 0.17 ± 0.03 mL/min/g; P < 0.001) and MVO(2) (27 ± 2.3 to 15 ± 2.7 μL O(2)/min/g; P < 0.001). At CPP = 40 mmHg, GLP-1 had no effect on coronary blood flow, MVO(2) or regional shortening, but dose-dependently increased myocardial glucose uptake from 0.11 ± 0.02 μmol/min/g at baseline to 0.17 ± 0.04 μmol/min/g at 1 nmol/L GLP-1 (P < 0.001). These data indicate that acute, intracoronary administration of GLP-1 (7-36) preferentially augments glucose metabolism in ischemic myocardium, independent of effects on cardiac contractile function or coronary blood flow.Item Perivascular Adipose Tissue Potentiates Contraction of Coronary Vascular Smooth Muscle: Influence of Obesity(American Heart Association, 2013) Owen, Meredith Kohr; Witzmann, Frank A.; McKenney, Mikaela L.; Lai, Xianyin; Berwick, Zachary C.; Moberly, Steven P.; Alloosh, Mouhamad; Sturek, Michael; Tune, Johnathan D.; Cellular and Integrative Physiology, School of MedicineBackground: This investigation examined the mechanisms by which coronary perivascular adipose tissue (PVAT)-derived factors influence vasomotor tone and the PVAT proteome in lean versus obese swine. Methods and results: Coronary arteries from Ossabaw swine were isolated for isometric tension studies. We found that coronary (P=0.03) and mesenteric (P=0.04) but not subcutaneous adipose tissue augmented coronary contractions to KCl (20 mmol/L). Inhibition of CaV1.2 channels with nifedipine (0.1 µmol/L) or diltiazem (10 µmol/L) abolished this effect. Coronary PVAT increased baseline tension and potentiated constriction of isolated arteries to prostaglandin F2α in proportion to the amount of PVAT present (0.1-1.0 g). These effects were elevated in tissues obtained from obese swine and were observed in intact and endothelium denuded arteries. Coronary PVAT also diminished H2O2-mediated vasodilation in lean and, to a lesser extent, in obese arteries. These effects were associated with alterations in the obese coronary PVAT proteome (detected 186 alterations) and elevated voltage-dependent increases in intracellular [Ca(2+)] in obese smooth muscle cells. Further studies revealed that the Rho-kinase inhibitor fasudil (1 µmol/L) significantly blunted artery contractions to KCl and PVAT in lean but not obese swine. Calpastatin (10 μmol/L) also augmented contractions to levels similar to that observed in the presence of PVAT. Conclusions: Vascular effects of PVAT vary according to anatomic location and are influenced by an obese phenotype. Augmented contractile effects of obese coronary PVAT are related to alterations in the PVAT proteome (eg, calpastatin), Rho-dependent signaling, and the functional contribution of K(+) and CaV1.2 channels to smooth muscle tone.