- Browse by Author
Browsing by Author "Mitchell, Braxton D."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies(Springer Nature, 2022) Li, Zilin; Li, Xihao; Zhou, Hufeng; Gaynor, Sheila M.; Selvaraj, Margaret Sunitha; Arapoglou, Theodore; Quick, Corbin; Liu, Yaowu; Chen, Han; Sun, Ryan; Dey, Rounak; Arnett, Donna K.; Auer, Paul L.; Bielak, Lawrence F.; Bis, Joshua C.; Blackwell, Thomas W.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer A.; Cade, Brian E.; Conomos, Matthew P.; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; de Vries, Paul S.; Duggirala, Ravindranath; Franceschini, Nora; Freedman, Barry I.; Göring, Harald H. H.; Guo, Xiuqing; Kalyani, Rita R.; Kooperberg, Charles; Kral, Brian G.; Lange, Leslie A.; Lin, Bridget M.; Manichaikul, Ani; Manning, Alisa K.; Martin, Lisa W.; Mathias, Rasika A.; Meigs, James B.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Peyser, Patricia A.; Psaty, Bruce M.; Raffield, Laura M.; Redline, Susan; Reiner, Alexander P.; Reupena, Muagututi'a Sefuiva; Rice, Kenneth M.; Rich, Stephen S.; Smith, Jennifer A.; Taylor, Kent D.; Taub, Margaret A.; Vasan, Ramachandran S.; Weeks, Daniel E.; Wilson, James G.; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; TOPMed Lipids Working Group; Rotter, Jerome I.; Willer, Cristen J.; Natarajan, Pradeep; Peloso, Gina M.; Lin, Xihong; Biostatistics and Health Data Science, School of MedicineLarge-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.Item A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation(Springer Nature, 2022) Vujkovic, Marijana; Ramdas, Shweta; Lorenz, Kim M.; Guo, Xiuqing; Darlay, Rebecca; Cordell, Heather J.; He, Jing; Gindin, Yevgeniy; Chung, Chuhan; Myers, Robert P.; Schneider, Carolin V.; Park, Joseph; Lee, Kyung Min; Serper, Marina; Carr, Rotonya M.; Kaplan, David E.; Haas, Mary E.; MacLean, Matthew T.; Witschey, Walter R.; Zhu, Xiang; Tcheandjieu, Catherine; Kember, Rachel L.; Kranzler, Henry R.; Verma, Anurag; Giri, Ayush; Klarin, Derek M.; Sun, Yan V.; Huang, Jie; Huffman, Jennifer E.; Townsend Creasy, Kate; Hand, Nicholas J.; Liu, Ching-Ti; Long, Michelle T.; Yao, Jie; Budoff, Matthew; Tan, Jingyi; Li, Xiaohui; Lin, Henry J.; Chen, Yii-Der Ida; Taylor, Kent D.; Chang, Ruey-Kang; Krauss, Ronald M.; Vilarinho, Silvia; Brancale, Joseph; Nielsen, Jonas B.; Locke, Adam E.; Jones, Marcus B.; Verweij, Niek; Baras, Aris; Reddy, K. Rajender; Neuschwander-Tetri, Brent A.; Schwimmer, Jeffrey B.; Sanyal, Arun J.; Chalasani, Naga; Ryan, Kathleen A.; Mitchell, Braxton D.; Gill, Dipender; Wells, Andrew D.; Manduchi, Elisabetta; Saiman, Yedidya; Mahmud, Nadim; Miller, Donald R.; Reaven, Peter D.; Phillips, Lawrence S.; Muralidhar, Sumitra; DuVall, Scott L.; Lee, Jennifer S.; Assimes, Themistocles L.; Pyarajan, Saiju; Cho, Kelly; Edwards, Todd L.; Damrauer, Scott M.; Wilson, Peter W.; Gaziano, J. Michael; O'Donnell, Christopher J.; Khera, Amit V.; Grant, Struan F. A.; Brown, Christopher D.; Tsao, Philip S.; Saleheen, Danish; Lotta, Luca A.; Bastarache, Lisa; Anstee, Quentin M.; Daly, Ann K.; Meigs, James B.; Rotter, Jerome I.; Lynch, Julie A.; Regeneron Genetics Center; Geisinger-Regeneron DiscovEHR Collaboration; EPoS Consortium; VA Million Veteran Program; Rader, Daniel J.; Voight, Benjamin F.; Chang, Kyong-Mi; Medicine, School of MedicineNonalcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease. Using a proxy NAFLD definition of chronic elevation of alanine aminotransferase (cALT) levels without other liver diseases, we performed a multiancestry genome-wide association study (GWAS) in the Million Veteran Program (MVP) including 90,408 cALT cases and 128,187 controls. Seventy-seven loci exceeded genome-wide significance, including 25 without prior NAFLD or alanine aminotransferase associations, with one additional locus identified in European American-only and two in African American-only analyses (P < 5 × 10-8). External replication in histology-defined NAFLD cohorts (7,397 cases and 56,785 controls) or radiologic imaging cohorts (n = 44,289) replicated 17 single-nucleotide polymorphisms (SNPs) (P < 6.5 × 10-4), of which 9 were new (TRIB1, PPARG, MTTP, SERPINA1, FTO, IL1RN, COBLL1, APOH and IFI30). Pleiotropy analysis showed that 61 of 77 multiancestry and all 17 replicated SNPs were jointly associated with metabolic and/or inflammatory traits, revealing a complex model of genetic architecture. Our approach integrating cALT, histology and imaging reveals new insights into genetic liability to NAFLD.Item Disentangling the genetics of lean mass(Oxford University Press, 2019-02-01) Karasik, David; Zillikens, M. Carola; Hsu, Yi-Hsiang; Aghdassi, Ali; Akesson, Kristina; Amin, Najaf; Barroso, Inês; Bennett, David A.; Bertram, Lars; Bochud, Murielle; Borecki, Ingrid B.; Broer, Linda; Buchman, Aron S.; Byberg, Liisa; Campbell, Harry; Campos-Obando, Natalia; Cauley, Jane A.; Cawthon, Peggy M.; Chambers, John C.; Chen, Zhao; Cho, Nam H.; Choi, Hyung Jin; Chou, Wen-Chi; Cummings, Steven R.; De Groot, Lisette C. P. G. M.; De Jager, Phillip L.; Demuth, Ilja; Diatchenko, Luda; Econs, Michael J.; Eiriksdottir, Gudny; Enneman, Anke W.; Eriksson, Joel; Eriksson, Johan G.; Estrada, Karol; Evans, Daniel S.; Feitosa, Mary F.; Fu, Mao; Gieger, Christian; Grallert, Harald; Gudnason, Vilmundur; Lenore, Launer J.; Hayward, Caroline; Hofman, Albert; Homuth, Georg; Huffman, Kim M.; Husted, Lise B.; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Johnson, Toby; Biffar, Reiner; Jordan, Joanne M.; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O.; Klopp, Norman; Kloth, Jacqueline S. L.; Koller, Daniel L.; Kooner, Jaspal S.; Kraus, William E.; Kritchevsky, Stephen; Kutalik, Zoltán; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L.; Lerch, Markus M.; Lewis, Joshua R.; Lill, Christina; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Livshits, Gregory; Ljunggren, Östen; Loos, Ruth J. F.; Lorentzon, Mattias; Luan, Jian'an; Luben, Robert N.; Malkin, Ida; McGuigan, Fiona E.; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Michaëlsson, Karl; Mitchell, Braxton D.; Morris, Andrew P.; Mosekilde, Leif; Nethander, Maria; Newman, Anne B.; O'Connell, Jeffery R.; Oostra, Ben A.; Orwoll, Eric S.; Palotie, Aarno; Peacock, Munro; Perola, Markus; Peters, Annette; Prince, Richard L.; Psaty, Bruce M.; Räikkönen, Katri; Ralston, Stuart H.; Ripatti, Samuli; Rivadeneira, Fernando; Robbins, John A.; Rotter, Jerome I.; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schipf, Sabine; Shin, Chan Soo; Smith, Albert V.; Smith, Shad B.; Soranzo, Nicole; Spector, Timothy D.; Stančáková, Alena; Stefansson, Kari; Steinhagen-Thiessen, Elisabeth; Stolk, Lisette; Streeten, Elizabeth A.; Styrkarsdottir, Unnur; Swart, Karin M. A.; Thompson, Patricia; Thomson, Cynthia A.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J.; Uitterlinden, André G.; Van Duijn, Cornelia M.; Van Schoor, Natasja M.; Vandenput, Liesbeth; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Wareham, Nicholas J.; Waterworth, Dawn; Weedon, Michael N.; Wichmann, H-Erich.; Widen, Elisabeth; Williams, Frances M. K.; Wilson, James F.; Wright, Nicole C.; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Zhou, Yanhua; Nielson, Carrie M.; Harris, Tamara B.; Demissie, Serkalem; Kiel, Douglas P.; Ohlsson, Claes; Medicine, School of MedicineBackground: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age2, and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LM were termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.Item Genome sequencing unveils a regulatory landscape of platelet reactivity(Springer Nature, 2021-06-15) Keramati, Ali R.; Chen, Ming-Huei; Rodriguez, Benjamin A. T.; Yanek, Lisa R.; Bhan, Arunoday; Gaynor, Brady J.; Ryan, Kathleen; Brody, Jennifer A.; Zhong, Xue; Wei, Qiang; NHLBI Trans-Omics for Precision (TOPMed) Consortium; Kammers, Kai; Kanchan, Kanika; Iyer, Kruthika; Kowalski, Madeline H.; Pitsillides, Achilleas N.; Cupples, L. Adrienne; Li, Bingshan; Schlaeger, Thorsten M.; Shuldiner, Alan R.; O’Connell, Jeffrey R.; Ruczinski, Ingo; Mitchell, Braxton D.; Faraday, Nauder; Taub, Margaret A.; Becker, Lewis C.; Lewis, Joshua P.; Mathias, Rasika A.; Johnson, Andrew D.; Medicine, School of MedicinePlatelet aggregation at the site of atherosclerotic vascular injury is the underlying pathophysiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.Item Impact of Rare and Common Genetic Variants on Diabetes Diagnosis by Hemoglobin A1c in Multi-Ancestry Cohorts: The Trans-Omics for Precision Medicine Program(Elsevier, 2019-09-26) Sarnowski, Chloé; Leong, Aaron; Raffield, Laura M.; Wu, Peitao; de Vries, Paul S.; DiCorpo, Daniel; Guo, Xiuqing; Xu, Huichun; Liu, Yongmei; Zheng, Xiuwen; Hu, Yao; Brody, Jennifer A.; Goodarzi, Mark O.; Hidalgo, Bertha A.; Highland, Heather M.; Jain, Deepti; Liu, Ching-Ti; Naik, Rakhi P.; O’Connell, Jeffrey R.; Perry, James A.; Porneala, Bianca C.; Selvin, Elizabeth; Wessel, Jennifer; Psaty, Bruce M.; Curran, Joanne E.; Peralta, Juan M.; Blangero, John; Kooperberg, Charles; Mathias, Rasika; Johnson, Andrew D.; Reiner, Alexander P.; Mitchell, Braxton D.; Cupples, L. Adrienne; Vasan, Ramachandran S.; Correa, Adolfo; Morrison, Alanna C.; Boerwinkle, Eric; Rotter, Jerome I.; Rich, Stephen S.; Manning, Alisa K.; Dupuis, Josée; Meigs, James B.; TOPMed Diabetes Working Group; TOPMed Hematology Working Group; TOPMed Hemostasis Working Group; National Heart, Lung, and Blood Institute TOPMed Consortium; Epidemiology, School of Public HealthHemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (−0.88% in hemizygous males, −0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; −0.98% in hemizygous males, −0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.Item Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies(Springer Nature, 2023) Li, Xihao; Quick, Corbin; Zhou, Hufeng; Gaynor, Sheila M.; Liu, Yaowu; Chen, Han; Selvaraj, Margaret Sunitha; Sun, Ryan; Dey, Rounak; Arnett, Donna K.; Bielak, Lawrence F.; Bis, Joshua C.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer A.; Cade, Brian E.; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; de Vries, Paul S.; Duggirala, Ravindranath; Freedman, Barry I.; Göring, Harald H. H.; Guo, Xiuqing; Haessler, Jeffrey; Kalyani, Rita R.; Kooperberg, Charles; Kral, Brian G.; Lange, Leslie A.; Manichaikul, Ani; Martin, Lisa W.; McGarvey, Stephen T.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Peyser, Patricia A.; Psaty, Bruce M.; Raffield, Laura M.; Redline, Susan; Reiner, Alexander P.; Reupena, Muagututi'a Sefuiva; Rice, Kenneth M.; Rich, Stephen S.; Sitlani, Colleen M.; Smith, Jennifer A.; Taylor, Kent D.; Vasan, Ramachandran S.; Willer, Cristen J.; Wilson, James G.; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; TOPMed Lipids Working Group; Rotter, Jerome I.; Natarajan, Pradeep; Peloso, Gina M.; Li, Zilin; Lin, Xihong; Biostatistics and Health Data Science, School of MedicineMeta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.Item Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed Whole Genome Sequencing Study(medRxiv, 2023-06-29) Wang, Yuxuan; Selvaraj, Margaret Sunitha; Li, Xihao; Li, Zilin; Holdcraft, Jacob A.; Arnett, Donna K.; Bis, Joshua C.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Cade, Brian E.; Carlson, Jenna C.; Carson, April P.; Chen, Yii-Der Ida; Curran, Joanne E.; de Vries, Paul S.; Dutcher, Susan K.; Ellinor, Patrick T.; Floyd, James S.; Fornage, Myriam; Freedman, Barry I.; Gabriel, Stacey; Germer, Soren; Gibbs, Richard A.; Guo, Xiuqing; He, Jiang; Heard-Costa, Nancy; Hildalgo, Bertha; Hou, Lifang; Irvin, Marguerite R.; Joehanes, Roby; Kaplan, Robert C.; Kardia, Sharon Lr.; Kelly, Tanika N.; Kim, Ryan; Kooperberg, Charles; Kral, Brian G.; Levy, Daniel; Li, Changwei; Liu, Chunyu; Lloyd-Jone, Don; Loos, Ruth Jf.; Mahaney, Michael C.; Martin, Lisa W.; Mathias, Rasika A.; Minster, Ryan L.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Murabito, Joanne M.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Preuss, Michael H.; Psaty, Bruce M.; Raffield, Laura M.; Rao, Dabeeru C.; Redline, Susan; Reiner, Alexander P.; Rich, Stephen S.; Ruepena, Muagututi'a Sefuiva; Sheu, Wayne H-H; Smith, Jennifer A.; Smith, Albert; Tiwari, Hemant K.; Tsai, Michael Y.; Viaud-Martinez, Karine A.; Wang, Zhe; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Rotter, Jerome I.; Lin, Xihong; Natarajan, Pradeep; Peloso, Gina M.; Biostatistics and Health Data Science, School of MedicineLong non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities.Item Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program(Springer Nature, 2021) Taliun, Daniel; Harris, Daniel N.; Kessler, Michael D.; Carlson, Jedidiah; Szpiech, Zachary A.; Torres, Raul; Gagliano Taliun, Sarah A.; Corvelo, André; Gogarten, Stephanie M.; Kang, Hyun Min; Pitsillides, Achilleas N.; LeFaive, Jonathon; Lee, Seung-Been; Tian, Xiaowen; Browning, Brian L.; Das, Sayantan; Emde, Anne-Katrin; Clarke, Wayne E.; Loesch, Douglas P.; Shetty, Amol C.; Blackwell, Thomas W.; Smith, Albert V.; Wong, Quenna; Liu, Xiaoming; Conomos, Matthew P.; Bobo, Dean M.; Aguet, François; Albert, Christine; Alonso, Alvaro; Ardlie, Kristin G.; Arking, Dan E.; Aslibekyan, Stella; Auer, Paul L.; Barnard, John; Barr, R. Graham; Barwick, Lucas; Becker, Lewis C.; Beer, Rebecca L.; Benjamin, Emelia J.; Bielak, Lawrence F.; Blangero, John; Boehnke, Michael; Bowden, Donald W.; Brody, Jennifer A.; Burchard, Esteban G.; Cade, Brian E.; Casella, James F.; Chalazan, Brandon; Chasman, Daniel I.; Chen, Yii-Der Ida; Cho, Michael H.; Choi, Seung Hoan; Chung, Mina K.; Clish, Clary B.; Correa, Adolfo; Curran, Joanne E.; Custer, Brian; Darbar, Dawood; Daya, Michelle; de Andrade, Mariza; DeMeo, Dawn L.; Dutcher, Susan K.; Ellinor, Patrick T.; Emery, Leslie S.; Eng, Celeste; Fatkin, Diane; Fingerlin, Tasha; Forer, Lukas; Fornage, Myriam; Franceschini, Nora; Fuchsberger, Christian; Fullerton, Stephanie M.; Germer, Soren; Gladwin, Mark T.; Gottlieb, Daniel J.; Guo, Xiuqing; Hall, Michael E.; He, Jiang; Heard-Costa, Nancy L.; Heckbert, Susan R.; Irvin, Marguerite R.; Johnsen, Jill M.; Johnson, Andrew D.; Kaplan, Robert; Kardia, Sharon L. R.; Kelly, Tanika; Kelly, Shannon; Kenny, Eimear E.; Kiel, Douglas P.; Klemmer, Robert; Konkle, Barbara A.; Kooperberg, Charles; Köttgen, Anna; Lange, Leslie A.; Lasky-Su, Jessica; Levy, Daniel; Lin, Xihong; Lin, Keng-Han; Liu, Chunyu; Loos, Ruth J. F.; Garman, Lori; Gerszten, Robert; Lubitz, Steven A.; Lunetta, Kathryn L.; Mak, Angel C. Y.; Manichaikul, Ani; Manning, Alisa K.; Mathias, Rasika A.; McManus, David D.; McGarvey, Stephen T.; Meigs, James B.; Meyers, Deborah A.; Mikulla, Julie L.; Minear, Mollie A.; Mitchell, Braxton D.; Mohanty, Sanghamitra; Montasser, May E.; Montgomery, Courtney; Morrison, Alanna C.; Murabito, Joanne M.; Natale, Andrea; Natarajan, Pradeep; Nelson, Sarah C.; North, Kari E.; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Pankratz, Nathan; Peloso, Gina M.; Peyser, Patricia A.; Pleiness, Jacob; Post, Wendy S.; Psaty, Bruce M.; Rao, D. C.; Redline, Susan; Reiner, Alexander P.; Roden, Dan; Rotter, Jerome I.; Ruczinski, Ingo; Sarnowski, Chloé; Schoenherr, Sebastian; Schwartz, David A.; Seo, Jeong-Sun; Seshadri, Sudha; Sheehan, Vivien A.; Sheu, Wayne H.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Smith, Jennifer A.; Sotoodehnia, Nona; Stilp, Adrienne M.; Tang, Weihong; Taylor, Kent D.; Telen, Marilyn; Thornton, Timothy A.; Tracy, Russell P.; Van Den Berg, David J.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Vrieze, Scott; Weeks, Daniel E.; Weir, Bruce S.; Weiss, Scott T.; Weng, Lu-Chen; Willer, Cristen J.; Zhang, Yingze; Zhao, Xutong; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Boerwinkle, Eric; Gabriel, Stacey; Gibbs, Richard; Rice, Kenneth M.; Rich, Stephen S.; Silverman, Edwin K.; Qasba, Pankaj; Gan, Weiniu; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Papanicolaou, George J.; Nickerson, Deborah A.; Browning, Sharon R.; Zody, Michael C.; Zöllner, Sebastian; Wilson, James G.; Cupples, L. Adrienne; Laurie, Cathy C.; Jaquish, Cashell E.; Hernandez, Ryan D.; O'Connor, Timothy D.; Abecasis, Gonçalo R.; Epidemiology, Richard M. Fairbanks School of Public HealthThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.Item Whole Genome Sequence Association Analysis of Fasting Glucose and Fasting Insulin Levels in Diverse Cohorts from the NHLBI TOPMed Program(Springer Nature, 2022-07-28) DiCorpo, Daniel; Gaynor, Sheila M.; Russell, Emily M.; Westerman, Kenneth E.; Raffield, Laura M.; Majarian, Timothy D.; Wu, Peitao; Sarnowski, Chloé; Highland, Heather M.; Jackson, Anne; Hasbani, Natalie R.; de Vries, Paul S.; Brody, Jennifer A.; Hidalgo, Bertha; Guo, Xiuqing; Perry, James A.; O’Connell, Jeffrey R.; Lent, Samantha; Montasser, May E.; Cade, Brian E.; Jain, Deepti; Wang, Heming; D’Oliveira Albanus, Ricardo; Varshney, Arushi; Yanek, Lisa R.; Lange, Leslie; Palmer, Nicholette D.; Almeida, Marcio; Peralta, Juan M.; Aslibekyan, Stella; Baldridge, Abigail S.; Bertoni, Alain G.; Bielak, Lawrence F.; Chen, Chung-Shiuan; Chen, Yii-Der Ida; Choi, Won Jung; Goodarzi, Mark O.; Floyd, James S.; Irvin, Marguerite R.; Kalyani, Rita R.; Kelly, Tanika N.; Lee, Seonwook; Liu, Ching-Ti; Loesch, Douglas; Manson, JoAnn E.; Minster, Ryan L.; Naseri, Take; Pankow, James S.; Rasmussen-Torvik, Laura J.; Reiner, Alexander P.; Reupena, Muagututi’a Sefuiva; Selvin, Elizabeth; Smith, Jennifer A.; Weeks, Daniel E.; Xu, Huichun; Yao, Jie; Zhao, Wei; Parker, Stephen; Alonso, Alvaro; Arnett, Donna K.; Blangero, John; Boerwinkle, Eric; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; Duggirala, Ravindranath; He, Jiang; Heckbert, Susan R.; Kardia, Sharon L.R.; Kim, Ryan W.; Kooperberg, Charles; Liu, Simin; Mathias, Rasika A.; McGarvey, Stephen T.; Mitchell, Braxton D.; Morrison, Alanna C.; Peyser, Patricia A.; Psaty, Bruce M.; Redline, Susan; Shuldiner, Alan R.; Taylor, Kent D.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Florez, Jose C.; Wilson, James G.; Sladek, Robert; Rich, Stephen S.; Rotter, Jerome I.; Lin, Xihong; Dupuis, Josée; Meigs, James B.; Wessel, Jennifer; Manning, Alisa K.; Epidemiology, School of Public HealthThe genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.Item Whole Genome Sequencing Analysis of Body Mass Index Identifies Novel African Ancestry-Specific Risk Allele(medRxiv, 2023-08-22) Zhang, Xinruo; Brody, Jennifer A.; Graff, Mariaelisa; Highland, Heather M.; Chami, Nathalie; Xu, Hanfei; Wang, Zhe; Ferrier, Kendra; Chittoor, Geetha; Josyula, Navya S.; Li, Xihao; Li, Zilin; Allison, Matthew A.; Becker, Diane M.; Bielak, Lawrence F.; Bis, Joshua C.; Boorgula, Meher Preethi; Bowden, Donald W.; Broome, Jai G.; Buth, Erin J.; Carlson, Christopher S.; Chang, Kyong-Mi; Chavan, Sameer; Chiu, Yen-Feng; Chuang, Lee-Ming; Conomos, Matthew P.; DeMeo, Dawn L.; Du, Margaret; Duggirala, Ravindranath; Eng, Celeste; Fohner, Alison E.; Freedman, Barry I.; Garrett, Melanie E.; Guo, Xiuqing; Haiman, Chris; Heavner, Benjamin D.; Hidalgo, Bertha; Hixson, James E.; Ho, Yuk-Lam; Hobbs, Brian D.; Hu, Donglei; Hui, Qin; Hwu, Chii-Min; Jackson, Rebecca D.; Jain, Deepti; Kalyani, Rita R.; Kardia, Sharon L. R.; Kelly, Tanika N.; Lange, Ethan M.; LeNoir, Michael; Li, Changwei; Marchand, Loic Le; McDonald, Merry-Lynn N.; McHugh, Caitlin P.; Morrison, Alanna C.; Naseri, Take; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; O'Connell, Jeffrey; O'Donnell, Christopher J.; Palmer, Nicholette D.; Pankow, James S.; Perry, James A.; Peters, Ulrike; Preuss, Michael H.; Rao, D. C.; Regan, Elizabeth A.; Reupena, Sefuiva M.; Roden, Dan M.; Rodriguez-Santana, Jose; Sitlani, Colleen M.; Smith, Jennifer A.; Tiwari, Hemant K.; Vasan, Ramachandran S.; Wang, Zeyuan; Weeks, Daniel E.; Wessel, Jennifer; Wiggins, Kerri L.; Wilkens, Lynne R.; Wilson, Peter W. F.; Yanek, Lisa R.; Yoneda, Zachary T.; Zhao, Wei; Zöllner, Sebastian; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Blangero, John; Boerwinkle, Eric; Burchard, Esteban G.; Carson, April P.; Chasman, Daniel I.; Chen, Yii-Der Ida; Curran, Joanne E.; Fornage, Myriam; Gordeuk, Victor R.; He, Jiang; Heckbert, Susan R.; Hou, Lifang; Irvin, Marguerite R.; Kooperberg, Charles; Minster, Ryan L.; Mitchell, Braxton D.; Nouraie, Mehdi; Psaty, Bruce M.; Raffield, Laura M.; Reiner, Alexander P.; Rich, Stephen S.; Rotter, Jerome I.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Taylor, Kent D.; Telen, Marilyn J.; Weiss, Scott T.; Zhang, Yingze; Heard-Costa, Nancy; Sun, Yan V.; Lin, Xihong; Cupples, L. Adrienne; Lange, Leslie A.; Liu, Ching-Ti; Loos, Ruth J. F.; North, Kari E.; Justice, Anne E.; Biostatistics and Health Data Science, School of MedicineObesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10−9). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.