- Browse by Author
Browsing by Author "Mintun, Mark A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease(Springer Nature, 2021) Salloway, Stephen; Farlow, Martin; McDade, Eric; Clifford, David B.; Wang, Guoqiao; Llibre-Guerra, Jorge J.; Hitchcock, Janice M.; Mills, Susan L.; Santacruz, Anna M.; Aschenbrenner, Andrew J.; Hassenstab, Jason; Benzinger, Tammie L.S.; Gordon, Brian A.; Fagan, Anne M.; Coalier, Kelley A.; Cruchaga, Carlos; Goate, Alison A.; Perrin, Richard J.; Xiong, Chengjie; Li, Yan; Morris, John C.; Snider, B. Joy; Mummery, Catherine; Surti, G. Mustafa; Hannequin, Didier; Wallon, David; Berman, Sarah B.; Lah, James J.; Jimenez-Velazquez, Ivonne Z.; Roberson, Erik D.; van Dyck, Christopher H.; Honig, Lawrence S.; Sánchez-Valle, Raquel; Brooks, William S.; Gauthier, Serge; Galasko, Douglas R.; Masters, Colin L.; Brosch, Jared R.; Hsiung, Ging-Yuek Robin; Jayadev, Suman; Formaglio, Maité; Masellis, Mario; Clarnette, Roger; Pariente, Jérémie; Dubois, Bruno; Pasquier, Florence; Jack, Clifford R., Jr.; Koeppe, Robert; Snyder, Peter J.; Aisen, Paul S.; Thomas, Ronald G.; Berry, Scott M.; Wendelberger, Barbara A.; Andersen, Scott W.; Holdridge, Karen C.; Mintun, Mark A.; Yaari, Roy; Sims, John R.; Baudler, Monika; Delmar, Paul; Doody, Rachelle S.; Fontoura, Paulo; Giacobino, Caroline; Kerchner, Geoffrey A.; Bateman, Randall J.; Dominantly Inherited Alzheimer Network–Trials Unit; Neurology, School of MedicineDominantly inherited Alzheimer's disease (DIAD) causes predictable biological changes decades before the onset of clinical symptoms, enabling testing of interventions in the asymptomatic and symptomatic stages to delay or slow disease progression. We conducted a randomized, placebo-controlled, multi-arm trial of gantenerumab or solanezumab in participants with DIAD across asymptomatic and symptomatic disease stages. Mutation carriers were assigned 3:1 to either drug or placebo and received treatment for 4-7 years. The primary outcome was a cognitive end point; secondary outcomes included clinical, cognitive, imaging and fluid biomarker measures. Fifty-two participants carrying a mutation were assigned to receive gantenerumab, 52 solanezumab and 40 placebo. Both drugs engaged their Aβ targets but neither demonstrated a beneficial effect on cognitive measures compared to controls. The solanezumab-treated group showed a greater cognitive decline on some measures and did not show benefits on downstream biomarkers. Gantenerumab significantly reduced amyloid plaques, cerebrospinal fluid total tau, and phospho-tau181 and attenuated increases of neurofilament light chain. Amyloid-related imaging abnormalities edema was observed in 19.2% (3 out of 11 were mildly symptomatic) of the gantenerumab group, 2.5% of the placebo group and 0% of the solanezumab group. Gantenerumab and solanezumab did not slow cognitive decline in symptomatic DIAD. The asymptomatic groups showed no cognitive decline; symptomatic participants had declined before reaching the target doses.Item Association of Donanemab Treatment With Exploratory Plasma Biomarkers in Early Symptomatic Alzheimer Disease: A Secondary Analysis of the TRAILBLAZER-ALZ Randomized Clinical Trial(American Medical Association, 2022) Pontecorvo, Michael J.; Lu, Ming; Burnham, Samantha C.; Schade, Andrew E.; Dage, Jeffrey L.; Shcherbinin, Sergey; Collins, Emily C.; Sims, John R.; Mintun, Mark A.; Neurology, School of MedicineImportance: Plasma biomarkers of Alzheimer disease may be useful as minimally invasive pharmacodynamic measures of treatment outcomes. Objective: To analyze the association of donanemab treatment with plasma biomarkers associated with Alzheimer disease. Design, setting, and participants: TRAILBLAZER-ALZ was a randomized, double-blind, placebo-controlled clinical trial conducted from December 18, 2017, to December 4, 2020, across 56 sites in the US and Canada. Exploratory biomarkers were prespecified with the post hoc addition of plasma glial fibrillary acidic protein and amyloid-β. Men and women aged 60 to 85 years with gradual and progressive change in memory function for at least 6 months were included. A total of 1955 participants were assessed for eligibility. Key eligibility criteria include Mini-Mental State Examination scores of 20 to 28 and elevated amyloid and intermediate tau levels. Interventions: Randomized participants received donanemab or placebo every 4 weeks for up to 72 weeks. The first 3 doses of donanemab were given at 700 mg and then increased to 1400 mg with blinded dose reductions as specified based on amyloid reduction. Main outcomes and measures: Change in plasma biomarker levels after donanemab treatment. Results: In TRAILBLAZER-ALZ, 272 participants (mean [SD] age, 75.2 [5.5] years; 145 [53.3%] female) were randomized. Plasma levels of phosphorylated tau217 (pTau217) and glial fibrillary acidic protein were significantly lower with donanemab treatment compared with placebo as early as 12 weeks after the start of treatment (least square mean change difference vs placebo, -0.04 [95% CI, -0.07 to -0.02]; P = .002 and -0.04 [95% CI, -0.07 to -0.01]; P = .01, respectively). No significant differences in plasma levels of amyloid-β 42/40 and neurofilament light chain were observed between treatment arms at the end of treatment. Changes in plasma pTau217 and glial fibrillary acidic protein were significantly correlated with the Centiloid percent change in amyloid (Spearman rank correlation coefficient [R] = 0.484 [95% CI, 0.359-0.592]; P < .001 and R = 0.453 [95% CI, 0.306-0.579]; P < .001, respectively) following treatment. Additionally, plasma levels of pTau217 and glial fibrillary acidic protein were significantly correlated at baseline and following treatment (R = 0.399 [95% CI, 0.278-0.508], P < .001 and R = 0.393 [95% CI, 0.254-0.517]; P < .001, respectively). Conclusions and relevance: Significant reductions in plasma biomarkers pTau217 and glial fibrillary acidic protein compared with placebo were observed following donanemab treatment in patients with early symptomatic Alzheimer disease. These easily accessible plasma biomarkers might provide additional evidence of Alzheimer disease pathology change through anti-amyloid therapy. Usefulness in assessing treatment response will require further evaluation.