- Browse by Author
Browsing by Author "Milone, Margherita"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Correction: Unraveling calcium dysregulation and autoimmunity in immune mediated rippling muscle disease(Springer Nature, 2025-03-24) Nath, Samir R.; Dasgupta, Aneesha; Dubey, Divyanshu; Kokesh, Eileen; Beecher, Grayson; Fadra, Numrah; Liewluck, Teerin; Pittock, Sean; Doles, Jason D.; Litchy, William; Milone, Margherita; Anatomy, Cell Biology and Physiology, School of MedicineCorrection: Acta Neuropathologica Communications (2025) 13:11 10.1186/s40478-025-01926-z In this article [1], the author’s name Teerin Liewluck was incorrectly written as Teerin Liewuck. The original article has been corrected.Item Molecular signatures of inherited and acquired sporadic late onset nemaline myopathies(BMC, 2023-01-26) Nicolau, Stefan; Dasgupta, Aneesha; Dasari, Surendra; Charlesworth, M. Cristine; Johnson, Kenneth L.; Pandey, Akhilesh; Doles, Jason D.; Milone, Margherita; Anatomy, Cell Biology and Physiology, School of MedicineAcquired sporadic late onset nemaline myopathy (SLONM) and inherited nemaline myopathy (iNM) both feature accumulation of nemaline rods in muscle fibers. Unlike iNM, SLONM is amenable to therapy. The distinction between these disorders is therefore crucial when the diagnosis remains ambiguous after initial investigations. We sought to identify biomarkers facilitating this distinction and to investigate the pathophysiology of nemaline rod formation in these different disorders. Twenty-two muscle samples from patients affected by SLONM or iNM underwent quantitative histological analysis, laser capture microdissection for proteomic analysis of nemaline rod areas and rod-free areas, and transcriptomic analysis. In all iNM samples, nemaline rods were found in subsarcolemmal or central aggregates, whereas they were diffusely distributed within muscle fibers in most SLONM samples. In SLONM, muscle fibers harboring nemaline rods were smaller than those without rods. Necrotic fibers, increased endomysial connective tissue, and atrophic fibers filled with nemaline rods were more common in SLONM. Proteomic analysis detected differentially expressed proteins between nemaline rod areas and rod-free areas, as well as between SLONM and iNM. These differentially expressed proteins implicated immune, structural, metabolic, and cellular processes in disease pathophysiology. Notably, immunoglobulin overexpression with accumulation in nemaline rod areas was detected in SLONM. Transcriptomic analysis corroborated proteomic findings and further revealed substantial gene expression differences between SLONM and iNM. Overall, we identified unique pathological and molecular signatures associated with SLONM and iNM, suggesting distinct underlying pathophysiological mechanisms. These findings represent a step towards enhanced diagnostic tools and towards development of treatments for SLONM.Item Myogenesis defects in a patient-derived iPSC model of hereditary GNE myopathy(Springer Nature, 2022-09-09) Schmitt, Rebecca E.; Smith, Douglas Y., IV.; Cho, Dong Seong; Kirkeby, Lindsey A.; Resch, Zachary T.; Liewluck, Teerin; Niu, Zhiyv; Milone, Margherita; Doles, Jason D.; Anatomy, Cell Biology and Physiology, School of MedicineHereditary muscle diseases are disabling disorders lacking effective treatments. UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) myopathy (GNEM) is an autosomal recessive distal myopathy with rimmed vacuoles typically manifesting in late adolescence/early adulthood. GNE encodes the rate-limiting enzyme in sialic acid biosynthesis, which is necessary for the proper function of numerous biological processes. Outside of the causative gene, very little is known about the mechanisms contributing to the development of GNE myopathy. In the present study, we aimed to address this knowledge gap by querying the underlying mechanisms of GNE myopathy using a patient-derived induced pluripotent stem-cell (iPSC) model. Control and patient-specific iPSCs were differentiated down a skeletal muscle lineage, whereby patient-derived GNEM iPSC clones were able to recapitulate key characteristics of the human pathology and further demonstrated defects in myogenic progression. Single-cell RNA sequencing time course studies revealed clear differences between control and GNEM iPSC-derived muscle precursor cells (iMPCs), while pathway studies implicated altered stress and autophagy signaling in GNEM iMPCs. Treatment of GNEM patient-derived iMPCs with an autophagy activator improved myogenic differentiation. In summary, we report an in vitro, iPSC-based model of GNE myopathy and implicate defective myogenesis as a contributing mechanism to the etiology of GNE myopathy.Item Unraveling calcium dysregulation and autoimmunity in immune mediated rippling muscle disease(Springer Nature, 2025-01-16) Nath, Samir R.; Dasgupta, Aneesha; Dubey, Divyanshu; Kokesh, Eileen; Beecher, Grayson; Fadra, Numrah; Liewuck, Teerin; Pittock, Sean; Doles, Jason D.; Litchy, William; Milone, Margherita; Anatomy, Cell Biology and Physiology, School of MedicineRippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood. Transcriptomic studies were performed on muscle biopsies of 8 patients (5 males; 3 females; ages 26-to-80) with iRMD. Subsequent pathway analysis compared iRMD to human non-disease control and disease control (dermatomyositis) muscle samples. Transcriptomic studies demonstrated changes in key pathways of muscle contraction and development. All iRMD samples had significantly upregulated cavin-4 expression compared to controls, likely compensatory for autoantibody-mediated protein degradation. Proteins involved in muscle relaxation (including SERCA1, PMCA and PLN) were significantly increased in iRMD compared to controls. Comparison of iRMD to dermatomyositis transcriptomics demonstrated significant overlap in immune pathways, and the IL-6 signaling pathway was markedly increased in all iRMD patient muscle biopsies and increased in the majority of iRMD patients' serum. This study represents the first muscle transcriptomic analysis of iRMD patients and dissects underlying disease mechanisms. Increase of sarcolemmal and cellular calcium channels as well as PLN, an inhibitor of the SERCA pump for calcium into the sarcoplasm, likely alters the calcium dynamics in iRMD. These changes in crucial components of muscle relaxation may underlie rippling by altering calcium flux. Our findings provide crucial insights into the differential expression of genes regulating muscle relaxation and highlight potential disease pathomechanisms.