- Browse by Author
Browsing by Author "Miller, Caroline"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways(American Physiological Society (APS), 2014-01-15) Gilley, Sandra K.; Stenbit, Antine E.; Pasek, Raymond C.; Sas, Kelli M.; Steele, Stacy L.; Amria, May; Bunni, Marlene A.; Estell, Kimberly P.; Schwiebert, Lisa M.; Flume, Patrick; Gooz, Monika; Haycraft, Courtney J.; Yoder, Bradley K.; Miller, Caroline; Pavlik, Jacqueline A.; Turner, Grant A.; Sisson, Joseph H.; Bell, P. Darwin; Department of Anatomy & Cell Biology, IU School of MedicineThe mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88− mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88− mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function.Item Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy(Public Library of Science, 2015) Kelly, Katherine J.; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H.; Dominguez, Jesus H.; Department of Medicine, IU School of MedicineAutosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.Item Mitochondria as Target for Tumor Management of Hemangioendothelioma(Liebert, 2020) Gordillo, Gayle M.; Biswas, Ayan; Singh, Kanhaiya; Sen, Abhishek; Guda, Poornachander R.; Miller, Caroline; Pan, Xueliang; Khanna, Savita; Cadenas, Enrique; Sen, Chandan K.; Surgery, School of MedicineAims: Hemangioendothelioma (HE) may be benign or malignant. Mouse hemangioendothelioma endothelial (EOMA) cells are validated to study mechanisms in HE. This work demonstrates that EOMA cells heavily rely on mitochondria to thrive. Thus, a combination therapy, including weak X-ray therapy (XRT, 0.5 Gy) and a standardized natural berry extract (NBE) was tested. This NBE is known to be effective in managing experimental HE and has been awarded with the Food and Drug Administration Investigational New Drug (FDA-IND) number 140318 for clinical studies on infantile hemangioma. Results: NBE treatment alone selectively attenuated basal oxygen consumption rate of EOMA cells. NBE specifically sensitized EOMA, but not murine aortic endothelial cells to XRT-dependent attenuation of mitochondrial respiration and adenosine triphosphate (ATP) production. Combination treatment, selectively and potently, influenced mitochondrial dynamics in EOMA cells such that fission was augmented. This was achieved by lowering of mitochondrial sirtuin 3 (SIRT3) causing increased phosphorylation of AMP-activated protein kinase (AMPK). A key role of SIRT3 in loss of EOMA cell viability caused by the combination therapy was evident when pyrroloquinoline quinone, an inducer of SIRT3, pretreatment rescued these cells. Innovation and Conclusion: Mitochondria-targeting NBE significantly extended survival of HE-affected mice. The beneficial effect of NBE in combination with weak X-ray therapy was, however, far more potent with threefold increase in murine survival. The observation that safe natural products may target tumor cell mitochondria and sharply lower radiation dosage required for tumor management warrants clinical testing.Item Mitochondrial connexin 43 in sex-dependent myocardial responses and estrogen-mediated cardiac protection following acute ischemia/reperfusion injury(Springer, 2019-11-18) Wang, Meijing; Smith, Kwynlyn; Yu, Qing; Miller, Caroline; Singh, Kanhaiya; Sen, Chandan K.; Surgery, School of MedicinePreserving mitochondrial activity is crucial in rescuing cardiac function following acute myocardial ischemia/reperfusion (I/R). The sex difference in myocardial functional recovery has been observed after I/R. Given the key role of mitochondrial connexin43 (Cx43) in cardiac protection initiated by ischemic preconditioning, we aimed to determine the implication of mitochondrial Cx43 in sex-related myocardial responses and to examine the effect of estrogen (17β-estradiol, E2) on Cx43, particularly mitochondrial Cx43-involved cardiac protection following I/R. Mouse primary cardiomyocytes and isolated mouse hearts (from males, females, ovariectomized females, and doxycycline-inducible Tnnt2-controlled Cx43 knockout without or with acute post-ischemic E2 treatment) were subjected to simulated I/R in culture or Langendorff I/R (25-min warm ischemia/40-min reperfusion), respectively. Mitochondrial membrane potential and mitochondrial superoxide production were measured in cardiomyocytes. Myocardial function and infarct size were determined. Cx43 and its isoform, Gja1-20k, were assessed in mitochondria. Immunoelectron microscopy and co-immunoprecipitation were also used to examine mitochondrial Cx43 and its interaction with estrogen receptor-α by E2 in mitochondria, respectively. There were sex disparities in stress-induced cardiomyocyte mitochondrial function. E2 partially restored mitochondrial activity in cardiomyocytes following acute injury. Post-ischemia infusion of E2 improved functional recovery and reduced infarct size with increased Cx43 content and phosphorylation in mitochondria. Ablation of cardiac Cx43 aggravated mitochondrial damage and abolished E2-mediated cardiac protection during I/R. Female mice were more resistant to myocardial I/R than age-matched males with greater protective role of mitochondrial Cx43 in female hearts. Post-ischemic E2 usage augmented mitochondrial Cx43 content and phosphorylation, increased mitochondrial Gja1-20k, and showed cardiac protection.Item Whole-exome sequencing enables correct diagnosis and surgical management of rare inherited childhood anemia(Cold Spring Harbor Laboratory Press, 2018-10-01) Khurana, Monica; Edwards, Donna; Rescorla, Frederic; Miller, Caroline; He, Ying; Potchanant, Elizabeth Sierra; Nalepa, Grzegorz; Pediatrics, School of MedicineCorrect diagnosis of inherited bone marrow failure syndromes is a challenge because of the significant overlap in clinical presentation of these disorders. Establishing right genetic diagnosis is crucial for patients' optimal clinical management and family counseling. A nondysmorphic infant reported here developed severe transfusion-dependent anemia and met clinical criteria for diagnosis of Diamond-Blackfan anemia (DBA). However, whole-exome sequencing demonstrated that the child was a compound heterozygote for a paternally inherited pathogenic truncating variant (SPTA1 c.4975 C>T) and a novel maternally inherited missense variant of uncertain significance (SPTA1 c.5029 G>A) within the spectrin gene, consistent with hereditary hemolytic anemia due to disruption of red blood cell (RBC) cytoskeleton. Ektacytometry demonstrated abnormal membrane flexibility of the child's RBCs. Scanning electron microscopy revealed morphological aberrations of the patient's RBCs. Both parents were found to have mild hereditary elliptocytosis. Importantly, patients with severe RBC membrane defects may be successfully managed with splenectomy to minimize peripheral destruction of misshapen RBCs, whereas patients with DBA require lifelong transfusions, steroid therapy, or hematopoietic stem cell transplantation. As suggested by the WES findings, splenectomy rendered our patient transfusion-independent, improving the family's quality of life and preventing transfusion-related iron overload. This case illustrates the utility of whole-exome sequencing in clinical care of children with genetic disorders of unclear presentation.