ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mestas, Annette"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Brain glycogen serves as a critical glucosamine cache required for protein glycosylation
    (Elsevier, 2021) Sun, Ramon C.; Young, Lyndsay E.A.; Bruntz, Ronald C.; Markussen, Kia H.; Zhou, Zhengqiu; Conroy, Lindsey R.; Hawkinson, Tara R.; Clarke, Harrison A.; Stanback, Alexandra E.; Macedo, Jessica K.A.; Emanuelle, Shane; Brewer, M. Kathryn; Rondon, Alberto L.; Mestas, Annette; Sanders, William C.; Mahalingan, Krishna K.; Tang, Buyun; Chikwana, Vimbai M.; Segvich, Dyann M.; Contreras, Christopher J.; Allenger, Elizabeth J.; Brainson, Christine F.; Johnson, Lance A.; Taylor, Richard E.; Armstrong, Dustin D.; Shaffer, Robert; Waechter, Charles J.; Vander Kooi, Craig W.; DePaoli-Roach, Anna A.; Roach, Peter J.; Hurley, Thomas D.; Drake, Richard R.; Gentry, Matthew S.; Biochemistry and Molecular Biology, School of Medicine
    Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University