ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Meng, Qingyou"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    ADGRG1 enriches for functional human hematopoietic stem cells following ex vivo expansion-induced mitochondrial oxidative stress
    (The American Society for Clinical Investigation, 2021) Chen, Yandan; Fang, Shuyi; Ding, Qingwei; Jiang, Rongzhen; He, Jiefeng; Wang, Qin; Jin, Yuting; Huang, Xinxin; Liu, Sheng; Capitano, Maegan L.; Trinh, Thao; Teng, Yincheng; Meng, Qingyou; Wan, Jun; Broxmeyer, Hal E.; Guo, Bin; BioHealth Informatics, School of Informatics and Computing
    The heterogeneity of human hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) under stress conditions such as ex vivo expansion is poorly understood. Here, we report that the frequencies of SCID-repopulating cells were greatly decreased in cord blood (CB) CD34+ HSCs and HPCs upon ex vivo culturing. Transcriptomic analysis and metabolic profiling demonstrated that mitochondrial oxidative stress of human CB HSCs and HPCs notably increased, along with loss of stemness. Limiting dilution analysis revealed that functional human HSCs were enriched in cell populations with low levels of mitochondrial ROS (mitoROS) during ex vivo culturing. Using single-cell RNA-Seq analysis of the mitoROS low cell population, we demonstrated that functional HSCs were substantially enriched in the adhesion GPCR G1-positive (ADGRG1+) population of CD34+CD133+ CB cells upon ex vivo expansion stress. Gene set enrichment analysis revealed that HSC signature genes including MSI2 and MLLT3 were enriched in CD34+CD133+ADGRG1+ CB HSCs. Our study reveals that ADGRG1 enriches for functional human HSCs under oxidative stress during ex vivo culturing, which can be a reliable target for drug screening of agonists of HSC expansion.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University