- Browse by Author
Browsing by Author "Mendell, Joshua T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver(The Journal of Clinical Investigation, 2012-08-01) Hsu, Shu-hao; Wang, Bo; Kota, Janaiah; Yu, Jianhua; Costinean, Stefan; Kutay, Huban; Yu, Lianbo; Bai, Shoumei; La Perle, Krista; Chivukula, Raghu R.; Mao, Hsiaoyin; Wei, Min; Clark, K. Reed; Mendell, Jerry R.; Caligiuri, Michael A.; Jacob, Samson T.; Mendell, Joshua T.; Ghoshal, KalpanamiR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepatitis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis, hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA. These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have important therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.Item Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice(Elsevier, 2017-09-30) Quirin, Kayla A.; Kwon, Jason J.; Alioufi, Arafat; Factora, Tricia; Temm, Constance J.; Jacobsen, Max; Sandusky, George E.; Shontz, Kim; Chicoine, Louis G.; Clark, K. Reed; Mendell, Joshua T.; Korc, Murray; Kota, Janaiah; Medical and Molecular Genetics, School of MedicineRecombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 1012 viral genomes (vg). Intraductal delivery of 1 × 1011 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 1011 vg. In a KrasG12D-driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.