- Browse by Author
Browsing by Author "Melton, Genevieve B."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A pragmatic, stepped-wedge, hybrid type II trial of interoperable clinical decision support to improve venous thromboembolism prophylaxis for patients with traumatic brain injury(Springer Nature, 2024-08-05) Tignanelli, Christopher J.; Shah, Surbhi; Vock, David; Siegel, Lianne; Serrano, Carlos; Haut, Elliott; Switzer, Sean; Martin, Christie L.; Rizvi, Rubina; Peta, Vincent; Jenkins, Peter C.; Lemke, Nicholas; Thyvalikakath, Thankam; Osheroff, Jerome A.; Torres, Denise; Vawdrey, David; Callcut, Rachael A.; Butler, Mary; Melton, Genevieve B.; Surgery, School of MedicineBackground: Venous thromboembolism (VTE) is a preventable medical condition which has substantial impact on patient morbidity, mortality, and disability. Unfortunately, adherence to the published best practices for VTE prevention, based on patient centered outcomes research (PCOR), is highly variable across U.S. hospitals, which represents a gap between current evidence and clinical practice leading to adverse patient outcomes. This gap is especially large in the case of traumatic brain injury (TBI), where reluctance to initiate VTE prevention due to concerns for potentially increasing the rates of intracranial bleeding drives poor rates of VTE prophylaxis. This is despite research which has shown early initiation of VTE prophylaxis to be safe in TBI without increased risk of delayed neurosurgical intervention or death. Clinical decision support (CDS) is an indispensable solution to close this practice gap; however, design and implementation barriers hinder CDS adoption and successful scaling across health systems. Clinical practice guidelines (CPGs) informed by PCOR evidence can be deployed using CDS systems to improve the evidence to practice gap. In the Scaling AcceptabLE cDs (SCALED) study, we will implement a VTE prevention CPG within an interoperable CDS system and evaluate both CPG effectiveness (improved clinical outcomes) and CDS implementation. Methods: The SCALED trial is a hybrid type 2 randomized stepped wedge effectiveness-implementation trial to scale the CDS across 4 heterogeneous healthcare systems. Trial outcomes will be assessed using the RE2-AIM planning and evaluation framework. Efforts will be made to ensure implementation consistency. Nonetheless, it is expected that CDS adoption will vary across each site. To assess these differences, we will evaluate implementation processes across trial sites using the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework (a determinant framework) using mixed-methods. Finally, it is critical that PCOR CPGs are maintained as evidence evolves. To date, an accepted process for evidence maintenance does not exist. We will pilot a "Living Guideline" process model for the VTE prevention CDS system. Discussion: The stepped wedge hybrid type 2 trial will provide evidence regarding the effectiveness of CDS based on the Berne-Norwood criteria for VTE prevention in patients with TBI. Additionally, it will provide evidence regarding a successful strategy to scale interoperable CDS systems across U.S. healthcare systems, advancing both the fields of implementation science and health informatics.Item Building to learn: Information technology innovations to enable rapid pragmatic evaluation in a learning health system(Wiley, 2024-04-16) Rajamani, Geetanjali; Melton, Genevieve B.; Pestka, Deborah L.; Peters, Maya; Ninkovic, Iva; Lindemann, Elizabeth; Beebe, Timothy J.; Shippee, Nathan; Benson, Bradley; Jacob, Abraham; Tignanelli, Christopher; Ingraham, Nicholas E.; Koopmeiners, Joseph S.; Usher, Michael G.; Medicine, School of MedicineBackground: Learning health systems (LHSs) iteratively generate evidence that can be implemented into practice to improve care and produce generalizable knowledge. Pragmatic clinical trials fit well within LHSs as they combine real-world data and experiences with a degree of methodological rigor which supports generalizability. Objectives: We established a pragmatic clinical trial unit ("RapidEval") to support the development of an LHS. To further advance the field of LHS, we sought to further characterize the role of health information technology (HIT), including innovative solutions and challenges that occur, to improve LHS project delivery. Methods: During the period from December 2021 to February 2023, eight projects were selected out of 51 applications to the RapidEval program, of which five were implemented, one is currently in pilot testing, and two are in planning. We evaluated pre-study planning, implementation, analysis, and study closure approaches across all RapidEval initiatives to summarize approaches across studies and identify key innovations and learnings by gathering data from study investigators, quality staff, and IT staff, as well as RapidEval staff and leadership. Implementation results: Implementation approaches spanned a range of HIT capabilities including interruptive alerts, clinical decision support integrated into order systems, patient navigators, embedded micro-education, targeted outpatient hand-off documentation, and patient communication. Study approaches include pre-post with time-concordant controls (1), randomized stepped-wedge (1), cluster randomized across providers (1) and location (3), and simple patient level randomization (2). Conclusions: Study selection, design, deployment, data collection, and analysis required close collaboration between data analysts, informaticists, and the RapidEval team.Item Do electronic health record systems "dumb down" clinicians?(Oxford University Press, 2022) Melton, Genevieve B.; Cimino, James J.; Lehmann, Christoph U.; Sengstack, Patricia R.; Smith, Joshua C.; Tierney, William M.; Miller, Randolph A.; Community and Global Health, Richard M. Fairbanks School of Public HealthA panel sponsored by the American College of Medical Informatics (ACMI) at the 2021 AMIA Symposium addressed the provocative question: "Are Electronic Health Records dumbing down clinicians?" After reviewing electronic health record (EHR) development and evolution, the panel discussed how EHR use can impair care delivery. Both suboptimal functionality during EHR use and longer-term effects outside of EHR use can reduce clinicians' efficiencies, reasoning abilities, and knowledge. Panel members explored potential solutions to problems discussed. Progress will require significant engagement from clinician-users, educators, health systems, commercial vendors, regulators, and policy makers. Future EHR systems must become more user-focused and scalable and enable providers to work smarter to deliver improved care.Item Evaluation of federated learning variations for COVID-19 diagnosis using chest radiographs from 42 US and European hospitals(Oxford University Press, 2022) Peng, Le; Luo, Gaoxiang; Walker, Andrew; Zaiman, Zachary; Jones, Emma K.; Gupta, Hemant; Kersten, Kristopher; Burns, John L.; Harle, Christopher A.; Magoc, Tanja; Shickel, Benjamin; Steenburg, Scott D.; Loftus, Tyler; Melton, Genevieve B.; Wawira Gichoya, Judy; Sun, Ju; Tignanelli, Christopher J.; Radiology and Imaging Sciences, School of MedicineObjective: Federated learning (FL) allows multiple distributed data holders to collaboratively learn a shared model without data sharing. However, individual health system data are heterogeneous. "Personalized" FL variations have been developed to counter data heterogeneity, but few have been evaluated using real-world healthcare data. The purpose of this study is to investigate the performance of a single-site versus a 3-client federated model using a previously described Coronavirus Disease 19 (COVID-19) diagnostic model. Additionally, to investigate the effect of system heterogeneity, we evaluate the performance of 4 FL variations. Materials and methods: We leverage a FL healthcare collaborative including data from 5 international healthcare systems (US and Europe) encompassing 42 hospitals. We implemented a COVID-19 computer vision diagnosis system using the Federated Averaging (FedAvg) algorithm implemented on Clara Train SDK 4.0. To study the effect of data heterogeneity, training data was pooled from 3 systems locally and federation was simulated. We compared a centralized/pooled model, versus FedAvg, and 3 personalized FL variations (FedProx, FedBN, and FedAMP). Results: We observed comparable model performance with respect to internal validation (local model: AUROC 0.94 vs FedAvg: 0.95, P = .5) and improved model generalizability with the FedAvg model (P < .05). When investigating the effects of model heterogeneity, we observed poor performance with FedAvg on internal validation as compared to personalized FL algorithms. FedAvg did have improved generalizability compared to personalized FL algorithms. On average, FedBN had the best rank performance on internal and external validation. Conclusion: FedAvg can significantly improve the generalization of the model compared to other personalization FL algorithms; however, at the cost of poor internal validity. Personalized FL may offer an opportunity to develop both internal and externally validated algorithms.