- Browse by Author
Browsing by Author "Meek, Anthony W."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Cortical Representation and Excitability Increases for a Thenar Muscle Mediate Improvement in Short-Term Cellular Phone Text Messaging Ability(MDPI, 2021-03-23) Meek, Anthony W.; Perez, Joselyn; Poston, Brach; Riley, Zachary A.; Health Sciences, School of Health and Human SciencesCortical representations expand during skilled motor learning. We studied a unique model of motor learning with cellular phone texting, where the thumbs are used exclusively to interact with the device and the prominence of use can be seen where 3200 text messages are exchanged a month in the 18-24 age demographic. The purpose of the present study was to examine the motor cortex representation and input-output (IO) recruitment curves of the abductor pollicis brevis (APB) muscle of the thumb and the ADM muscle with transcranial magnetic stimulation (TMS), relative to individuals' texting abilities and short-term texting practice. Eighteen individuals performed a functional texting task (FTT) where we scored their texting speed and accuracy. TMS was then used to examine the cortical volumes and areas of activity in the two muscles and IO curves were constructed to measure excitability. Subjects also performed a 10-min practice texting task, after which we repeated the cortical measures. There were no associations between the cortical measures and the FTT scores before practice. However, after practice the APB cortical map expanded and excitability increased, whereas the ADM map constricted. The increase in the active cortical areas in APB correlated with the improvement in the FTT score. Based on the homogenous group of subjects that were already good at texting, we conclude that the cortical representations and excitability for the thumb muscle were already enlarged and more receptive to changes with short-term practice, as noted by the increase in FTT performance after 10-min of practice.Item Cutaneous Silent Period Characteristics are Dependent on the Organization of Upper Limb Muscles(Office of the Vice Chancellor for Research, 2014-04-11) Eckert, Nathan R.; Meek, Anthony W.; Smith, Krista; Williams, Jason C.; Riley, Zachary A.Cutaneous silent periods (CSPs) are inhibitory spinal reflexes mediated by small diameter A-δ fibers, serving to protect the body from harmful stimuli (Leis et al., 1992; Kofler, 2003). Currently, CSPs are believed to only inhibit the extensor muscles of the upper limb halting motions such as reaching, while exciting flexor muscles to withdraw the limb. The present study sought to determine if CSPs could be evoked in both extensor and flexor muscles of the upper limb, thereby providing further insight into the organization of the spinal circuitry associated with this reflex. 22 subjects performed contractions with seven muscles from the hand, forearm, upper arm, and shoulder while muscle activity was recorded with electromyography. Subjects were electrically stimulated (10x perceptual threshold) with 20 individual pulses delivered to each digit II (radial nerve) and digit V (ulnar nerve) of the right hand during each contraction. Results demonstrated significant main effects (p<0.001) across muscles for the key dependent variables of the CSP: onsets (F[6,21] = 15.42, p <0.001), durations (F[6,21] = 65.39, p <0.001), and % of suppression (F[6,21] = 91, p <0.001), similarly for both nerves stimulated. Distal muscles presented with the earliest onset times, longest duration of inhibition, and largest amount of inhibition. Moving proximally, the onset times became later with duration and the amount of inhibition decreasing. Linear regressions showed that the distance of the muscle from the spinal cord (cm) was a significant predictor of the duration (digit II r2 = 0.43; digit V r2 = 0.46) and amount of inhibition (digit II r2 = 0.51; digit V r2 = 0.48). The results demonstrate the occurrence of CSPs throughout the upper limb, with the greatest inhibition of distal muscles, leading us to hypothesize that the corticospinal tract, specifically direct cortico-motorneuronal connections, are directly influenced by the inhibitory input.Item Determinants of Fatigue in the Biceps Brachii During Blood Flow Restriction Training(Office of the Vice Chancellor for Research, 2016-04-08) Meek, Anthony W.; Wilfong, Emily; Streepey, Jefferson W.; Riley, Zachary A.Training loads of 60% - 80% of maximum are traditionally recommended for increasing muscular strength. Lifting lighter loads (~20% of 1RM) with concomitant blood flow restriction (BFR) can also increase muscle strength. It is unknown if adaptation with BFR is limited to the muscle or also due to changes in the nervous system. We examined changes in the output of the motor cortex and the muscle with stimulation, when subjects perform 1.) Training with light loads, 2.) Training with light loads with BFR, and 3.) Training with moderate loads. 5 subjects completed three training sessions with the elbow flexor muscles. Maximal strength was measured before and after each training session. Voluntary activation was tested with cortical stimulation (TMS) and with electrical stimulation of the biceps during additional MVCs. Subjects trained with a block of 4 isometric contractions at 20% MVC (120s, 60s, 60s, 60s durations) or at 60% MVC (40s, 20s, 20s, 20s durations). Fatigue (% decrease in MVC after training) was similar between 20% with BFR and 60% conditions (18.6% and 16%) and less in the 20% without BFR condition (9.7%). Cortical voluntary activation decreased similarly between the 20% BFR and 60% conditions (-3.6% and -3.3%) and showed less change with 20% without BFR (-1.8%). Alternatively, with electrical stimulation of the muscle, both 20% training conditions showed a decline in voluntary activation (-3.1% and -5.15), while voluntary activation increased by 8% after the 60% condition. Similar levels of fatigue occur at different contraction intensities when BFR is applied during the lighter contraction. Both 20% with BFR and 60% loading causes deficits in cortical activation, though the limiting factor in the 20% BFR condition is a decrease in activation of the muscle directly, while in the 60% contraction it is due to an inability to drive the motorneuron pool sufficiently.Item Initial KAATSU Cuff Tightness: Effect of Limb Anthropometrics on Blood Flow Restriction(Office of the Vice Chancellor for Research, 2014-04-11) Heavrin, Adam; Meek, Anthony W.; Segal, Neil A.; Mikesky, Alan E.INTRODUCTION KAATSU training involves low load (20%1RM) resistance exercise combined with partial blood flow restriction (BFR). BFR is achieved by positioning a specially designed pneumatic cuff around the proximal aspect of the limb, cinching it to an initial cuff tightness (ICT), then inflating the cuff to a higher restrictive training pressure. ICTs can potentially impact the degree of BFR (%BFR) caused at the higher training pressures, yet many studies use the same ICTs for all subjects (1). Identifying that discrepancies in %BFR exist between subjects with different limb anthropometrics is an important step in moving toward standardization of BFR dose for KAATSU training prescription. The purpose of this study was to identify variation in %BFR between subjects experiencing the same ICT and what limb anthropometrics (circumference, muscle, and fat composition) may be determinants. METHODS Forty-two volunteers (26 men, 16 women) provided informed consent. Caliper skin folds, Gulick tape circumferences, and peripheral quantitative computed tomography (pQCT) scans were performed on the randomly assigned ipsilateral arm and leg at the level of the KAATSU cuff application. %BFR was measured via pulse-wave Doppler ultrasound at baseline (no cuff) and at an ICT of 30 mmHg. Variable relationships were assessed using Pearson correlations and stepwise linear regression. RESULTS The average %BFR (avg±st. dev.) for the arm and leg was 16.01±11.42% and 16.75±9.27% with a range of 46.66% and 36.41%, respectively. The dependent variable for regression analysis was %BFR. In the arm, pQCT-determined muscle (R2=0.614) and fat composition (R2=0.587) were significant (p<0.05) determinants of %BFR. Circumference was also a determinant (R2=0.163). There were no significant correlations between %BFR and the anthropometrics for the leg. pQCT fat composition and sum of skin folds correlated significantly (r=0.915, p<0.05). pQCT circumference and Gulick circumference measures correlated significantly (r=0.991, p<0.05). DISCUSSION Conflicting BFR training results have been reported in the literature. A potential cause could be universal ICT usage causing some individuals to receive an inadequate training stimulus. Individuals using a 30 mmHg ICT will experience different %BFR when limb anthropometrics vary. Thus a method of assigning ICTs specific to individuals’ anthropometric characteristics is needed to ensure equally potent stimuli. Skin fold measures and circumference measures were highly correlated with pQCT data. As a result, skin fold and Gulick circumference measures can be used to predict arm composition at the level of the cuff and may inform prescription of appropriate ICTs that result in more consistent initial %BFR across individuals.Item KAATSU Cuff Tightness and Limb Anthropometry: Effect on Blood Flow Restriction(Office of the Vice Chancellor for Research, 2014-04-11) Meek, Anthony W.; Heavrin, Adam; Segal, Neil A.; Mikesky, Alan E.KAATSU resistance training involves low loads (20%1RM) and partial blood flow restriction (BFR). When applying a BFR cuff, the initial cuff tightness (ICT) is important. ICTs can potentially impact the degree of BFR (%BFR) caused by the subsequent inflation to the target training pressures. It’s known that limb anthropometrics can affect the amount of BFR that is produced at specific pressures. Understanding the interaction between limb anthropometrics and ICT is an important first step in standardizing BFR dose between individuals for KAATSU training prescription. Purpose: To determine what limb anthropometrics (circumference, muscle or fat composition) have the greatest effect on %BFR with various ICTs. Methods: Forty-two volunteers (26 men, 16 women) provided informed consent. Caliper skin folds (anterior and posterior), Gulick tape circumferences, and peripheral quantitative computed tomography (pQCT) scans were performed on the randomly assigned ipsilateral arm and leg at the level of the KAATSU cuff. %BFR was measured via pulse-wave Doppler ultrasound at baseline (no cuff) and at 5 ICT pressures (20, 30, 40, 50 and 60mmHg). Variable relationships were assessed using Pearson correlations and stepwise linear regression. Results: The dependent variable for regression analysis was %BFR at each ICT. pQCT-determined muscle (R2= .147, .614, .445, .360, & .232, respectively) and fat composition (R2= .138, .587, .429, .338, & .220, respectively) were significant (p<.05) determinants of BFR at all ICT pressures in the arm. At 30mmHg, circumference was also a determinant (R2=.163). There were no significant correlations between %BFR and any of the ICT pressures for the leg. pQCT fat composition and sum of skin folds correlated significantly (r=.915, p<.05). pQCT circumference and Gulick circumference measures correlated significantly (r=.991, p<.05). Conclusion: Arm anthropometrics impact the %BFR created by 5 ICTs in the arm. Skin fold measures and circumference measures were highly correlated with pQCT data. As a result, skin fold and Gulick circumference measures can be used to predict arm composition at the level of the cuff and may inform prescription of appropriate ICTs that result in more consistent initial %BFR across individuals.Item Subject factors influencing blood flow restriction in the arm at low cuff pressures(Wiley, 2022) Meek, Anthony W.; Heavrin, Adam M.; Mikesky, Alan E.; Segal, Neil A.; Riley, Zachary A.; Health Sciences, School of Health and Human SciencesBACKGROUND Limb circumference predicts the pressure needed for complete occlusion. However, that relationship is inconsistent at moderate pressures typical of effective blood flow restriction (BFR) training. The purpose of this study was to investigate the influence of subject factors on BFR at low restriction pressures in the arm. METHODS Fifty subjects had arm anthropometrics assessed by peripheral quantitative computed tomography (pQCT), skin folds (sumSKF) and Gulick tape (GulCirc) at cuff level. Blood flow was measured with ultrasound at baseline and five restrictive pressures (20,30,40,50, and 60mmHg). Relationships between subject characteristics and BFR were assessed using Pearson correlations and hierarchical regression. RESULTS Blood flow decreased (p<0.05) at each incremental pressure. Regression models including muscle composition (%Muscle), pQCT circumference, and systolic blood pressure (SBP), were significant at all 5 pressures (R2 = 0.18 to 0.49). %Muscle explained the most variance at each pressure. Regression models including sumSKF, Gul circ, and SBP, were significant at 30–60mmHg (R2 = 0.28 to 0.49). SumSKF explained the most variance at each pressure. CONCLUSIONS At low pressures (20–60mmHg), there is considerable variability in the magnitude of BFR across individuals. Arm composition factors (muscle, fat) explained the greatest variance at each cuff pressure, and may be the most important consideration when using BFR protocols.