- Browse by Author
Browsing by Author "Medeiros, Alexandra I."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Leukotriene B4 licenses inflammasome activation to enhance skin host defense(National Academy of Science, 2020-12-01) Guerta Salina, Ana Carolina; Brandt, Stephanie L.; Klopfenstein, Nathan; Blackman, Amondrea; Ribeiro Bazzano, Júlia Miranda; Sá-Nunes, Anderson; Byers-Glosson, Nicole; Brodskyn, Claudia; Machado Tavares, Natalia; Santos Da Silva, Icaro Bonyek; Medeiros, Alexandra I.; Serezani, C. Henrique; Microbiology and Immunology, School of MedicineThe initial production of inflammatory mediators dictates host defense as well as tissue injury. Inflammasome activation is a constituent of the inflammatory response by recognizing pathogen and host-derived products and eliciting the production of IL-1β and IL-18 in addition to inducing a type of inflammatory cell death termed "pyroptosis." Leukotriene B4 (LTB4) is a lipid mediator produced quickly (seconds to minutes) by phagocytes and induces chemotaxis, increases cytokine/chemokine production, and enhances antimicrobial effector functions. Whether LTB4 directly activates the inflammasome remains to be determined. Our data show that endogenously produced LTB4 is required for the expression of pro-IL-1β and enhances inflammasome assembly in vivo and in vitro. Furthermore, LTB4-mediated Bruton's tyrosine kinase (BTK) activation is required for inflammasome assembly in vivo as well for IL-1β-enhanced skin host defense. Together, these data unveil a new role for LTB4 in enhancing the expression and assembly of inflammasome components and suggest that while blocking LTB4 actions could be a promising therapeutic strategy to prevent inflammasome-mediated diseases, exogenous LTB4 can be used as an adjuvant to boost inflammasome-dependent host defense.Item Topical Prostaglandin E Analog Restores Defective Dendritic Cell–Mediated Th17 Host Defense Against Methicillin-Resistant Staphylococcus Aureus in the Skin of Diabetic Mice(American Diabetes Association, 2016-12) Dejani, Naiara N.; Brandt, Stephanie L.; Piñeros, Annie; Glosson-Byers, Nicole L.; Wang, Sue; Son, Young Min; Medeiros, Alexandra I.; Serezani, C. Henrique; Microbiology and Immunology, School of MedicinePeople with diabetes are more prone to Staphylococcus aureus skin infection than healthy individuals. Control of S. aureus infection depends on dendritic cell (DC)–induced T-helper 17 (Th17)–mediated neutrophil recruitment and bacterial clearance. DC ingestion of infected apoptotic cells (IACs) drive prostaglandin E2 (PGE2) secretion to generate Th17 cells. We speculated that hyperglycemia inhibits skin DC migration to the lymph nodes and impairs the Th17 differentiation that accounts for poor skin host defense in diabetic mice. Diabetic mice showed increased skin lesion size and bacterial load and decreased PGE2 secretion and Th17 cells compared with nondiabetic mice after methicillin-resistant S. aureus (MRSA) infection. Bone marrow–derived DCs (BMDCs) cultured in high glucose (25 mmol/L) exhibited decreased Ptges mRNA expression, PGE2 production, lower CCR7-dependent DC migration, and diminished maturation after recognition of MRSA-IACs than BMDCs cultured in low glucose (5 mmol/L). Similar events were observed in DCs from diabetic mice infected with MRSA. Topical treatment of diabetic mice with the PGE analog misoprostol improved host defense against MRSA skin infection by restoring DC migration to draining lymph nodes, Th17 differentiation, and increased antimicrobial peptide expression. These findings identify a novel mechanism involved in poor skin host defense in diabetes and propose a targeted strategy to restore skin host defense in diabetes.