- Browse by Author
Browsing by Author "McMillan, Kathryn P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Identification of B6SJL mSOD1(G93A) mouse subgroups with different disease progression rates(Wiley, 2015-12-15) Haulcomb, Melissa M.; Mesnard-Hoaglin, Nichole A.; Batka, Richard J.; Meadows, Rena M.; Miller, Whitney M.; McMillan, Kathryn P.; Brown, Todd J.; Sanders, Virginia M.; Jones, Kathryn J.; Department of Anatomy & Cell Biology, IU School of MedicineDisease progression rates among patients with amyotrophic lateral sclerosis (ALS) vary greatly. Although the majority of affected individuals survive 3-5 years following diagnosis, some subgroups experience a more rapidly progressing form, surviving less than 1 year, and other subgroups experience slowly progressing forms, surviving nearly 50 years. Genetic heterogeneity and environmental factors pose significant barriers in investigating patient progression rates. Similar to the case for humans, variation in survival within the mSOD1 mouse has been well documented, but different progression rates have not been investigated. The present study identifies two subgroups of B6SJL mSOD1(G93A) mice with different disease progression rates, a fast progression group (FPG) and slow progression group, as evidenced by differences in the rate of motor function decline. In addition, increased disease-associated gene expression within the FPG facial motor nucleus confirmed the presence of a more severe phenotype. We hypothesize that a more severe disease phenotype could be the result of 1) an earlier onset of axonal disconnection with a consistent degeneration rate or 2) a more severe or accelerated degenerative process. We performed a facial nerve transection axotomy in both mSOD1 subgroups prior to disease onset as a method to standardize the axonal disconnection. Instead of leading to comparable gene expression in both subgroups, this standardization did not eliminate the severe phenotype in the FPG facial nucleus, suggesting that the FPG phenotype is the result of a more severe or accelerated degenerative process. We theorize that these mSOD1 subgroups are representative of the rapid and slow disease phenotypes often experienced in ALS.Item Impact of peripheral immune status on central molecular responses to facial nerve axotomy(Elsevier, 2018-02) Setter, Deborah O.; Runge, Elizabeth M.; Schartz, Nicole D.; Kennedy, Felicia M.; Brown, Brandon L.; McMillan, Kathryn P.; Miller, Whitney M.; Shah, Kishan M.; Haulcomb, Melissa M.; Sanders, Virginia M.; Jones, Karthryn J.; Anatomy and Cell Biology, IU School of MedicineWhen facial nerve axotomy (FNA) is performed on immunodeficient recombinase activating gene-2 knockout (RAG-2-/-) mice, there is greater facial motoneuron (FMN) death relative to wild type (WT) mice. Reconstituting RAG-2-/- mice with whole splenocytes rescues FMN survival after FNA, and CD4+ T cells specifically drive immune-mediated neuroprotection. Evidence suggests that immunodysregulation may contribute to motoneuron death in amyotrophic lateral sclerosis (ALS). Immunoreconstitution of RAG-2-/- mice with lymphocytes from the mutant superoxide dismutase (mSOD1) mouse model of ALS revealed that the mSOD1 whole splenocyte environment suppresses mSOD1 CD4+ T cell-mediated neuroprotection after FNA. The objective of the current study was to characterize the effect of CD4+ T cells on the central molecular response to FNA and then identify if mSOD1 whole splenocytes blocked these regulatory pathways. Gene expression profiles of the axotomized facial motor nucleus were assessed from RAG-2-/- mice immunoreconstituted with either CD4+ T cells or whole splenocytes from WT or mSOD1 donors. The findings indicate that immunodeficient mice have suppressed glial activation after axotomy, and cell transfer of WT CD4+ T cells rescues microenvironment responses. Additionally, mSOD1 whole splenocyte recipients exhibit an increased astrocyte activation response to FNA. In RAG-2-/- + mSOD1 whole splenocyte mice, an elevation of motoneuron-specific Fas cell death pathways is also observed. Altogether, these findings suggest that mSOD1 whole splenocytes do not suppress mSOD1 CD4+ T cell regulation of the microenvironment, and instead, mSOD1 whole splenocytes may promote motoneuron death by either promoting a neurotoxic astrocyte phenotype or inducing Fas-mediated cell death pathways. This study demonstrates that peripheral immune status significantly affects central responses to nerve injury. Future studies will elucidate the mechanisms by which mSOD1 whole splenocytes promote cell death and if inhibiting this mechanism can preserve motoneuron survival in injury and disease.Item Locomotor analysis identifies early compensatory changes during disease progression and subgroup classification in a mouse model of amyotrophic lateral sclerosis(Medknow Publications, 2017-10) Haulcomb, Melissa M.; Meadows, Rena M.; Miller, Whitney M.; McMillan, Kathryn P.; Hilsmeyer, MeKenzie J.; Wang, Xuefu; Beaulieu, Wesley T.; Dickinson, Stephanie L.; Brown, Todd J.; Sanders, Virginia M.; Jones, Kathryn J.; Anatomy and Cell Biology, School of MedicineAmyotrophic lateral sclerosis is a motoneuron degenerative disease that is challenging to diagnose and presents with considerable variability in survival. Early identification and enhanced understanding of symptomatic patterns could aid in diagnosis and provide an avenue for monitoring disease progression. Use of the mSOD1G93A mouse model provides control of the confounding environmental factors and genetic heterogeneity seen in amyotrophic lateral sclerosis patients, while investigating underlying disease-induced changes. In the present study, we performed a longitudinal behavioral assessment paradigm and identified an early hindlimb symptom, resembling the common gait abnormality foot drop, along with an accompanying forelimb compensatory mechanism in the mSOD1G93A mouse. Following these initial changes, mSOD1 mice displayed a temporary hindlimb compensatory mechanism resembling an exaggerated steppage gait. As the disease progressed, these compensatory mechanisms were not sufficient to sustain fundamental locomotor parameters and more severe deficits appeared. We next applied these initial findings to investigate the inherent variability in B6SJL mSOD1G93A survival. We identified four behavioral variables that, when combined in a cluster analysis, identified two subpopulations with different disease progression rates: a fast progression group and a slow progression group. This behavioral assessment paradigm, with its analytical approaches, provides a method for monitoring disease progression and detecting mSOD1 subgroups with different disease severities. This affords researchers an opportunity to search for genetic modifiers or other factors that likely enhance or slow disease progression. Such factors are possible therapeutic targets with the potential to slow disease progression and provide insight into the underlying pathology and disease mechanisms.